ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpeqd GIF version

Theorem sqxpeqd 4664
Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.)
Hypothesis
Ref Expression
xpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
sqxpeqd (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵))

Proof of Theorem sqxpeqd
StepHypRef Expression
1 xpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
21, 1xpeq12d 4663 1 (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363   × cxp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-11 1516  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-opab 4077  df-xp 4644
This theorem is referenced by:  imasaddfnlemg  12752  intopsn  12804  srg1zr  13234  ispsmet  14094  isxms  14222  isms  14224  xmspropd  14248  mspropd  14249
  Copyright terms: Public domain W3C validator