ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpeqd GIF version

Theorem sqxpeqd 4701
Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.)
Hypothesis
Ref Expression
xpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
sqxpeqd (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵))

Proof of Theorem sqxpeqd
StepHypRef Expression
1 xpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
21, 1xpeq12d 4700 1 (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373   × cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-opab 4106  df-xp 4681
This theorem is referenced by:  prdsval  13105  imasaddfnlemg  13146  intopsn  13199  srg1zr  13749  ispsmet  14795  isxms  14923  isms  14925  xmspropd  14949  mspropd  14950
  Copyright terms: Public domain W3C validator