ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpeqd GIF version

Theorem sqxpeqd 4654
Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.)
Hypothesis
Ref Expression
xpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
sqxpeqd (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵))

Proof of Theorem sqxpeqd
StepHypRef Expression
1 xpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
21, 1xpeq12d 4653 1 (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353   × cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-opab 4067  df-xp 4634
This theorem is referenced by:  imasaddfnlemg  12741  intopsn  12792  srg1zr  13176  ispsmet  13963  isxms  14091  isms  14093  xmspropd  14117  mspropd  14118
  Copyright terms: Public domain W3C validator