Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intopsn | Unicode version |
Description: The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
intopsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 | |
2 | id 19 | . . . . . 6 | |
3 | 2 | sqxpeqd 4637 | . . . . 5 |
4 | 3, 2 | feq23d 5343 | . . . 4 |
5 | 1, 4 | syl5ibcom 154 | . . 3 |
6 | fdm 5353 | . . . . . . 7 | |
7 | 6 | eqcomd 2176 | . . . . . 6 |
8 | 7 | adantr 274 | . . . . 5 |
9 | fdm 5353 | . . . . . 6 | |
10 | 9 | eqeq2d 2182 | . . . . 5 |
11 | 8, 10 | syl5ibcom 154 | . . . 4 |
12 | xpid11 4834 | . . . 4 | |
13 | 11, 12 | syl6ib 160 | . . 3 |
14 | 5, 13 | impbid 128 | . 2 |
15 | simpr 109 | . . . 4 | |
16 | xpsng 5671 | . . . 4 | |
17 | 15, 16 | sylancom 418 | . . 3 |
18 | 17 | feq2d 5335 | . 2 |
19 | opexg 4213 | . . . . 5 | |
20 | 19 | anidms 395 | . . . 4 |
21 | fsng 5669 | . . . 4 | |
22 | 20, 21 | mpancom 420 | . . 3 |
23 | 22 | adantl 275 | . 2 |
24 | 14, 18, 23 | 3bitrd 213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 csn 3583 cop 3586 cxp 4609 cdm 4611 wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: mgmb1mgm1 12622 |
Copyright terms: Public domain | W3C validator |