Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intopsn | Unicode version |
Description: The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
intopsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 | |
2 | id 19 | . . . . . 6 | |
3 | 2 | sqxpeqd 4630 | . . . . 5 |
4 | 3, 2 | feq23d 5333 | . . . 4 |
5 | 1, 4 | syl5ibcom 154 | . . 3 |
6 | fdm 5343 | . . . . . . 7 | |
7 | 6 | eqcomd 2171 | . . . . . 6 |
8 | 7 | adantr 274 | . . . . 5 |
9 | fdm 5343 | . . . . . 6 | |
10 | 9 | eqeq2d 2177 | . . . . 5 |
11 | 8, 10 | syl5ibcom 154 | . . . 4 |
12 | xpid11 4827 | . . . 4 | |
13 | 11, 12 | syl6ib 160 | . . 3 |
14 | 5, 13 | impbid 128 | . 2 |
15 | simpr 109 | . . . 4 | |
16 | xpsng 5660 | . . . 4 | |
17 | 15, 16 | sylancom 417 | . . 3 |
18 | 17 | feq2d 5325 | . 2 |
19 | opexg 4206 | . . . . 5 | |
20 | 19 | anidms 395 | . . . 4 |
21 | fsng 5658 | . . . 4 | |
22 | 20, 21 | mpancom 419 | . . 3 |
23 | 22 | adantl 275 | . 2 |
24 | 14, 18, 23 | 3bitrd 213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 csn 3576 cop 3579 cxp 4602 cdm 4604 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: mgmb1mgm1 12599 |
Copyright terms: Public domain | W3C validator |