| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intopsn | Unicode version | ||
| Description: The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.) |
| Ref | Expression |
|---|---|
| intopsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | id 19 |
. . . . . 6
| |
| 3 | 2 | sqxpeqd 4690 |
. . . . 5
|
| 4 | 3, 2 | feq23d 5406 |
. . . 4
|
| 5 | 1, 4 | syl5ibcom 155 |
. . 3
|
| 6 | fdm 5416 |
. . . . . . 7
| |
| 7 | 6 | eqcomd 2202 |
. . . . . 6
|
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | fdm 5416 |
. . . . . 6
| |
| 10 | 9 | eqeq2d 2208 |
. . . . 5
|
| 11 | 8, 10 | syl5ibcom 155 |
. . . 4
|
| 12 | xpid11 4890 |
. . . 4
| |
| 13 | 11, 12 | imbitrdi 161 |
. . 3
|
| 14 | 5, 13 | impbid 129 |
. 2
|
| 15 | simpr 110 |
. . . 4
| |
| 16 | xpsng 5740 |
. . . 4
| |
| 17 | 15, 16 | sylancom 420 |
. . 3
|
| 18 | 17 | feq2d 5398 |
. 2
|
| 19 | opexg 4262 |
. . . . 5
| |
| 20 | 19 | anidms 397 |
. . . 4
|
| 21 | fsng 5738 |
. . . 4
| |
| 22 | 20, 21 | mpancom 422 |
. . 3
|
| 23 | 22 | adantl 277 |
. 2
|
| 24 | 14, 18, 23 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: mgmb1mgm1 13070 |
| Copyright terms: Public domain | W3C validator |