Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intopsn | Unicode version |
Description: The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
intopsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . 4 | |
2 | id 19 | . . . . . 6 | |
3 | 2 | sqxpeqd 4646 | . . . . 5 |
4 | 3, 2 | feq23d 5353 | . . . 4 |
5 | 1, 4 | syl5ibcom 155 | . . 3 |
6 | fdm 5363 | . . . . . . 7 | |
7 | 6 | eqcomd 2181 | . . . . . 6 |
8 | 7 | adantr 276 | . . . . 5 |
9 | fdm 5363 | . . . . . 6 | |
10 | 9 | eqeq2d 2187 | . . . . 5 |
11 | 8, 10 | syl5ibcom 155 | . . . 4 |
12 | xpid11 4843 | . . . 4 | |
13 | 11, 12 | syl6ib 161 | . . 3 |
14 | 5, 13 | impbid 129 | . 2 |
15 | simpr 110 | . . . 4 | |
16 | xpsng 5683 | . . . 4 | |
17 | 15, 16 | sylancom 420 | . . 3 |
18 | 17 | feq2d 5345 | . 2 |
19 | opexg 4222 | . . . . 5 | |
20 | 19 | anidms 397 | . . . 4 |
21 | fsng 5681 | . . . 4 | |
22 | 20, 21 | mpancom 422 | . . 3 |
23 | 22 | adantl 277 | . 2 |
24 | 14, 18, 23 | 3bitrd 214 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 cvv 2735 csn 3589 cop 3592 cxp 4618 cdm 4620 wf 5204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 |
This theorem is referenced by: mgmb1mgm1 12651 |
Copyright terms: Public domain | W3C validator |