ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intopsn Unicode version

Theorem intopsn 12792
Description: The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
Assertion
Ref Expression
intopsn  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )

Proof of Theorem intopsn
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  .o.  : ( B  X.  B ) --> B )
2 id 19 . . . . . 6  |-  ( B  =  { Z }  ->  B  =  { Z } )
32sqxpeqd 4654 . . . . 5  |-  ( B  =  { Z }  ->  ( B  X.  B
)  =  ( { Z }  X.  { Z } ) )
43, 2feq23d 5363 . . . 4  |-  ( B  =  { Z }  ->  (  .o.  : ( B  X.  B ) --> B  <->  .o.  : ( { Z }  X.  { Z } ) --> { Z } ) )
51, 4syl5ibcom 155 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  ->  .o. 
: ( { Z }  X.  { Z }
) --> { Z }
) )
6 fdm 5373 . . . . . . 7  |-  (  .o. 
: ( B  X.  B ) --> B  ->  dom  .o.  =  ( B  X.  B ) )
76eqcomd 2183 . . . . . 6  |-  (  .o. 
: ( B  X.  B ) --> B  -> 
( B  X.  B
)  =  dom  .o.  )
87adantr 276 . . . . 5  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  X.  B )  =  dom  .o.  )
9 fdm 5373 . . . . . 6  |-  (  .o. 
: ( { Z }  X.  { Z }
) --> { Z }  ->  dom  .o.  =  ( { Z }  X.  { Z } ) )
109eqeq2d 2189 . . . . 5  |-  (  .o. 
: ( { Z }  X.  { Z }
) --> { Z }  ->  ( ( B  X.  B )  =  dom  .o.  <->  ( B  X.  B )  =  ( { Z }  X.  { Z }
) ) )
118, 10syl5ibcom 155 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  ->  ( B  X.  B )  =  ( { Z }  X.  { Z }
) ) )
12 xpid11 4852 . . . 4  |-  ( ( B  X.  B )  =  ( { Z }  X.  { Z }
)  <->  B  =  { Z } )
1311, 12imbitrdi 161 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  ->  B  =  { Z }
) )
145, 13impbid 129 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  : ( { Z }  X.  { Z } ) --> { Z } ) )
15 simpr 110 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  Z  e.  B )
16 xpsng 5694 . . . 4  |-  ( ( Z  e.  B  /\  Z  e.  B )  ->  ( { Z }  X.  { Z } )  =  { <. Z ,  Z >. } )
1715, 16sylancom 420 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( { Z }  X.  { Z } )  =  { <. Z ,  Z >. } )
1817feq2d 5355 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  <->  .o.  : { <. Z ,  Z >. } --> { Z } ) )
19 opexg 4230 . . . . 5  |-  ( ( Z  e.  B  /\  Z  e.  B )  -> 
<. Z ,  Z >.  e. 
_V )
2019anidms 397 . . . 4  |-  ( Z  e.  B  ->  <. Z ,  Z >.  e.  _V )
21 fsng 5692 . . . 4  |-  ( (
<. Z ,  Z >.  e. 
_V  /\  Z  e.  B )  ->  (  .o.  : { <. Z ,  Z >. } --> { Z } 
<->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2220, 21mpancom 422 . . 3  |-  ( Z  e.  B  ->  (  .o.  : { <. Z ,  Z >. } --> { Z } 
<->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2322adantl 277 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : { <. Z ,  Z >. } --> { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2414, 18, 233bitrd 214 1  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2739   {csn 3594   <.cop 3597    X. cxp 4626   dom cdm 4628   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225
This theorem is referenced by:  mgmb1mgm1  12793
  Copyright terms: Public domain W3C validator