ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intopsn Unicode version

Theorem intopsn 12598
Description: The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
Assertion
Ref Expression
intopsn  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )

Proof of Theorem intopsn
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  .o.  : ( B  X.  B ) --> B )
2 id 19 . . . . . 6  |-  ( B  =  { Z }  ->  B  =  { Z } )
32sqxpeqd 4630 . . . . 5  |-  ( B  =  { Z }  ->  ( B  X.  B
)  =  ( { Z }  X.  { Z } ) )
43, 2feq23d 5333 . . . 4  |-  ( B  =  { Z }  ->  (  .o.  : ( B  X.  B ) --> B  <->  .o.  : ( { Z }  X.  { Z } ) --> { Z } ) )
51, 4syl5ibcom 154 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  ->  .o. 
: ( { Z }  X.  { Z }
) --> { Z }
) )
6 fdm 5343 . . . . . . 7  |-  (  .o. 
: ( B  X.  B ) --> B  ->  dom  .o.  =  ( B  X.  B ) )
76eqcomd 2171 . . . . . 6  |-  (  .o. 
: ( B  X.  B ) --> B  -> 
( B  X.  B
)  =  dom  .o.  )
87adantr 274 . . . . 5  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  X.  B )  =  dom  .o.  )
9 fdm 5343 . . . . . 6  |-  (  .o. 
: ( { Z }  X.  { Z }
) --> { Z }  ->  dom  .o.  =  ( { Z }  X.  { Z } ) )
109eqeq2d 2177 . . . . 5  |-  (  .o. 
: ( { Z }  X.  { Z }
) --> { Z }  ->  ( ( B  X.  B )  =  dom  .o.  <->  ( B  X.  B )  =  ( { Z }  X.  { Z }
) ) )
118, 10syl5ibcom 154 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  ->  ( B  X.  B )  =  ( { Z }  X.  { Z }
) ) )
12 xpid11 4827 . . . 4  |-  ( ( B  X.  B )  =  ( { Z }  X.  { Z }
)  <->  B  =  { Z } )
1311, 12syl6ib 160 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  ->  B  =  { Z }
) )
145, 13impbid 128 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  : ( { Z }  X.  { Z } ) --> { Z } ) )
15 simpr 109 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  Z  e.  B )
16 xpsng 5660 . . . 4  |-  ( ( Z  e.  B  /\  Z  e.  B )  ->  ( { Z }  X.  { Z } )  =  { <. Z ,  Z >. } )
1715, 16sylancom 417 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( { Z }  X.  { Z } )  =  { <. Z ,  Z >. } )
1817feq2d 5325 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  <->  .o.  : { <. Z ,  Z >. } --> { Z } ) )
19 opexg 4206 . . . . 5  |-  ( ( Z  e.  B  /\  Z  e.  B )  -> 
<. Z ,  Z >.  e. 
_V )
2019anidms 395 . . . 4  |-  ( Z  e.  B  ->  <. Z ,  Z >.  e.  _V )
21 fsng 5658 . . . 4  |-  ( (
<. Z ,  Z >.  e. 
_V  /\  Z  e.  B )  ->  (  .o.  : { <. Z ,  Z >. } --> { Z } 
<->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2220, 21mpancom 419 . . 3  |-  ( Z  e.  B  ->  (  .o.  : { <. Z ,  Z >. } --> { Z } 
<->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2322adantl 275 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : { <. Z ,  Z >. } --> { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2414, 18, 233bitrd 213 1  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576   <.cop 3579    X. cxp 4602   dom cdm 4604   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  mgmb1mgm1  12599
  Copyright terms: Public domain W3C validator