| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intopsn | Unicode version | ||
| Description: The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.) |
| Ref | Expression |
|---|---|
| intopsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | id 19 |
. . . . . 6
| |
| 3 | 2 | sqxpeqd 4699 |
. . . . 5
|
| 4 | 3, 2 | feq23d 5415 |
. . . 4
|
| 5 | 1, 4 | syl5ibcom 155 |
. . 3
|
| 6 | fdm 5425 |
. . . . . . 7
| |
| 7 | 6 | eqcomd 2210 |
. . . . . 6
|
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | fdm 5425 |
. . . . . 6
| |
| 10 | 9 | eqeq2d 2216 |
. . . . 5
|
| 11 | 8, 10 | syl5ibcom 155 |
. . . 4
|
| 12 | xpid11 4899 |
. . . 4
| |
| 13 | 11, 12 | imbitrdi 161 |
. . 3
|
| 14 | 5, 13 | impbid 129 |
. 2
|
| 15 | simpr 110 |
. . . 4
| |
| 16 | xpsng 5749 |
. . . 4
| |
| 17 | 15, 16 | sylancom 420 |
. . 3
|
| 18 | 17 | feq2d 5407 |
. 2
|
| 19 | opexg 4271 |
. . . . 5
| |
| 20 | 19 | anidms 397 |
. . . 4
|
| 21 | fsng 5747 |
. . . 4
| |
| 22 | 20, 21 | mpancom 422 |
. . 3
|
| 23 | 22 | adantl 277 |
. 2
|
| 24 | 14, 18, 23 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 |
| This theorem is referenced by: mgmb1mgm1 13118 |
| Copyright terms: Public domain | W3C validator |