ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intopsn Unicode version

Theorem intopsn 12650
Description: The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
Assertion
Ref Expression
intopsn  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )

Proof of Theorem intopsn
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  .o.  : ( B  X.  B ) --> B )
2 id 19 . . . . . 6  |-  ( B  =  { Z }  ->  B  =  { Z } )
32sqxpeqd 4646 . . . . 5  |-  ( B  =  { Z }  ->  ( B  X.  B
)  =  ( { Z }  X.  { Z } ) )
43, 2feq23d 5353 . . . 4  |-  ( B  =  { Z }  ->  (  .o.  : ( B  X.  B ) --> B  <->  .o.  : ( { Z }  X.  { Z } ) --> { Z } ) )
51, 4syl5ibcom 155 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  ->  .o. 
: ( { Z }  X.  { Z }
) --> { Z }
) )
6 fdm 5363 . . . . . . 7  |-  (  .o. 
: ( B  X.  B ) --> B  ->  dom  .o.  =  ( B  X.  B ) )
76eqcomd 2181 . . . . . 6  |-  (  .o. 
: ( B  X.  B ) --> B  -> 
( B  X.  B
)  =  dom  .o.  )
87adantr 276 . . . . 5  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  X.  B )  =  dom  .o.  )
9 fdm 5363 . . . . . 6  |-  (  .o. 
: ( { Z }  X.  { Z }
) --> { Z }  ->  dom  .o.  =  ( { Z }  X.  { Z } ) )
109eqeq2d 2187 . . . . 5  |-  (  .o. 
: ( { Z }  X.  { Z }
) --> { Z }  ->  ( ( B  X.  B )  =  dom  .o.  <->  ( B  X.  B )  =  ( { Z }  X.  { Z }
) ) )
118, 10syl5ibcom 155 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  ->  ( B  X.  B )  =  ( { Z }  X.  { Z }
) ) )
12 xpid11 4843 . . . 4  |-  ( ( B  X.  B )  =  ( { Z }  X.  { Z }
)  <->  B  =  { Z } )
1311, 12syl6ib 161 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  ->  B  =  { Z }
) )
145, 13impbid 129 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  : ( { Z }  X.  { Z } ) --> { Z } ) )
15 simpr 110 . . . 4  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  Z  e.  B )
16 xpsng 5683 . . . 4  |-  ( ( Z  e.  B  /\  Z  e.  B )  ->  ( { Z }  X.  { Z } )  =  { <. Z ,  Z >. } )
1715, 16sylancom 420 . . 3  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( { Z }  X.  { Z } )  =  { <. Z ,  Z >. } )
1817feq2d 5345 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : ( { Z }  X.  { Z } ) --> { Z }  <->  .o.  : { <. Z ,  Z >. } --> { Z } ) )
19 opexg 4222 . . . . 5  |-  ( ( Z  e.  B  /\  Z  e.  B )  -> 
<. Z ,  Z >.  e. 
_V )
2019anidms 397 . . . 4  |-  ( Z  e.  B  ->  <. Z ,  Z >.  e.  _V )
21 fsng 5681 . . . 4  |-  ( (
<. Z ,  Z >.  e. 
_V  /\  Z  e.  B )  ->  (  .o.  : { <. Z ,  Z >. } --> { Z } 
<->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2220, 21mpancom 422 . . 3  |-  ( Z  e.  B  ->  (  .o.  : { <. Z ,  Z >. } --> { Z } 
<->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2322adantl 277 . 2  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  (  .o.  : { <. Z ,  Z >. } --> { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
2414, 18, 233bitrd 214 1  |-  ( (  .o.  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .o.  =  { <. <. Z ,  Z >. ,  Z >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   _Vcvv 2735   {csn 3589   <.cop 3592    X. cxp 4618   dom cdm 4620   -->wf 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215
This theorem is referenced by:  mgmb1mgm1  12651
  Copyright terms: Public domain W3C validator