Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssiinf | GIF version |
Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ssiinf.1 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
ssiinf | ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | eliin 3871 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
4 | 3 | ralbii 2472 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
5 | ssiinf.1 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
6 | nfcv 2308 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
7 | 5, 6 | ralcomf 2627 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
8 | 4, 7 | bitri 183 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
9 | dfss3 3132 | . 2 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) | |
10 | dfss3 3132 | . . 3 ⊢ (𝐶 ⊆ 𝐵 ↔ ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) | |
11 | 10 | ralbii 2472 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
12 | 8, 9, 11 | 3bitr4i 211 | 1 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 Ⅎwnfc 2295 ∀wral 2444 Vcvv 2726 ⊆ wss 3116 ∩ ciin 3867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-iin 3869 |
This theorem is referenced by: ssiin 3916 dmiin 4850 |
Copyright terms: Public domain | W3C validator |