ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiinf GIF version

Theorem ssiinf 3922
Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
ssiinf.1 𝑥𝐶
Assertion
Ref Expression
ssiinf (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)

Proof of Theorem ssiinf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . 5 𝑦 ∈ V
2 eliin 3878 . . . . 5 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
31, 2ax-mp 5 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
43ralbii 2476 . . 3 (∀𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀𝑦𝐶𝑥𝐴 𝑦𝐵)
5 ssiinf.1 . . . 4 𝑥𝐶
6 nfcv 2312 . . . 4 𝑦𝐴
75, 6ralcomf 2631 . . 3 (∀𝑦𝐶𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
84, 7bitri 183 . 2 (∀𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
9 dfss3 3137 . 2 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑦𝐶 𝑦 𝑥𝐴 𝐵)
10 dfss3 3137 . . 3 (𝐶𝐵 ↔ ∀𝑦𝐶 𝑦𝐵)
1110ralbii 2476 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
128, 9, 113bitr4i 211 1 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2141  wnfc 2299  wral 2448  Vcvv 2730  wss 3121   ciin 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-iin 3876
This theorem is referenced by:  ssiin  3923  dmiin  4857
  Copyright terms: Public domain W3C validator