ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiinf GIF version

Theorem ssiinf 3898
Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
ssiinf.1 𝑥𝐶
Assertion
Ref Expression
ssiinf (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)

Proof of Theorem ssiinf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2715 . . . . 5 𝑦 ∈ V
2 eliin 3854 . . . . 5 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
31, 2ax-mp 5 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
43ralbii 2463 . . 3 (∀𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀𝑦𝐶𝑥𝐴 𝑦𝐵)
5 ssiinf.1 . . . 4 𝑥𝐶
6 nfcv 2299 . . . 4 𝑦𝐴
75, 6ralcomf 2618 . . 3 (∀𝑦𝐶𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
84, 7bitri 183 . 2 (∀𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
9 dfss3 3118 . 2 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑦𝐶 𝑦 𝑥𝐴 𝐵)
10 dfss3 3118 . . 3 (𝐶𝐵 ↔ ∀𝑦𝐶 𝑦𝐵)
1110ralbii 2463 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
128, 9, 113bitr4i 211 1 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2128  wnfc 2286  wral 2435  Vcvv 2712  wss 3102   ciin 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-in 3108  df-ss 3115  df-iin 3852
This theorem is referenced by:  ssiin  3899  dmiin  4829
  Copyright terms: Public domain W3C validator