Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssiinf | GIF version |
Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ssiinf.1 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
ssiinf | ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | eliin 3887 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
4 | 3 | ralbii 2481 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
5 | ssiinf.1 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
6 | nfcv 2317 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
7 | 5, 6 | ralcomf 2636 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
8 | 4, 7 | bitri 184 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
9 | dfss3 3143 | . 2 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) | |
10 | dfss3 3143 | . . 3 ⊢ (𝐶 ⊆ 𝐵 ↔ ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) | |
11 | 10 | ralbii 2481 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
12 | 8, 9, 11 | 3bitr4i 212 | 1 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2146 Ⅎwnfc 2304 ∀wral 2453 Vcvv 2735 ⊆ wss 3127 ∩ ciin 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-in 3133 df-ss 3140 df-iin 3885 |
This theorem is referenced by: ssiin 3932 dmiin 4866 |
Copyright terms: Public domain | W3C validator |