ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiinf GIF version

Theorem ssiinf 3931
Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
ssiinf.1 𝑥𝐶
Assertion
Ref Expression
ssiinf (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)

Proof of Theorem ssiinf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2738 . . . . 5 𝑦 ∈ V
2 eliin 3887 . . . . 5 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
31, 2ax-mp 5 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
43ralbii 2481 . . 3 (∀𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀𝑦𝐶𝑥𝐴 𝑦𝐵)
5 ssiinf.1 . . . 4 𝑥𝐶
6 nfcv 2317 . . . 4 𝑦𝐴
75, 6ralcomf 2636 . . 3 (∀𝑦𝐶𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
84, 7bitri 184 . 2 (∀𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
9 dfss3 3143 . 2 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑦𝐶 𝑦 𝑥𝐴 𝐵)
10 dfss3 3143 . . 3 (𝐶𝐵 ↔ ∀𝑦𝐶 𝑦𝐵)
1110ralbii 2481 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
128, 9, 113bitr4i 212 1 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2146  wnfc 2304  wral 2453  Vcvv 2735  wss 3127   ciin 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-in 3133  df-ss 3140  df-iin 3885
This theorem is referenced by:  ssiin  3932  dmiin  4866
  Copyright terms: Public domain W3C validator