![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssiinf | GIF version |
Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ssiinf.1 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
ssiinf | ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | eliin 3893 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
4 | 3 | ralbii 2483 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
5 | ssiinf.1 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
6 | nfcv 2319 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
7 | 5, 6 | ralcomf 2638 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
8 | 4, 7 | bitri 184 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
9 | dfss3 3147 | . 2 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) | |
10 | dfss3 3147 | . . 3 ⊢ (𝐶 ⊆ 𝐵 ↔ ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) | |
11 | 10 | ralbii 2483 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
12 | 8, 9, 11 | 3bitr4i 212 | 1 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2148 Ⅎwnfc 2306 ∀wral 2455 Vcvv 2739 ⊆ wss 3131 ∩ ciin 3889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2741 df-in 3137 df-ss 3144 df-iin 3891 |
This theorem is referenced by: ssiin 3939 dmiin 4875 |
Copyright terms: Public domain | W3C validator |