ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfuzi Unicode version

Theorem dfuzi 9427
Description: An expression for the upper integers that start at  N that is analogous to dfnn2 8984 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
Hypothesis
Ref Expression
dfuz.1  |-  N  e.  ZZ
Assertion
Ref Expression
dfuzi  |-  { z  e.  ZZ  |  N  <_  z }  =  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }
Distinct variable group:    x, y, z, N

Proof of Theorem dfuzi
StepHypRef Expression
1 ssintab 3887 . . 3  |-  ( { z  e.  ZZ  |  N  <_  z }  C_  |^|
{ x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. x ( ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x )  ->  { z  e.  ZZ  |  N  <_  z } 
C_  x ) )
2 dfuz.1 . . . 4  |-  N  e.  ZZ
32peano5uzi 9426 . . 3  |-  ( ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  ->  { z  e.  ZZ  |  N  <_  z } 
C_  x )
41, 3mpgbir 1464 . 2  |-  { z  e.  ZZ  |  N  <_  z }  C_  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
52zrei 9323 . . . . . 6  |-  N  e.  RR
65leidi 8504 . . . . 5  |-  N  <_  N
7 breq2 4033 . . . . . 6  |-  ( z  =  N  ->  ( N  <_  z  <->  N  <_  N ) )
87elrab 2916 . . . . 5  |-  ( N  e.  { z  e.  ZZ  |  N  <_ 
z }  <->  ( N  e.  ZZ  /\  N  <_  N ) )
92, 6, 8mpbir2an 944 . . . 4  |-  N  e. 
{ z  e.  ZZ  |  N  <_  z }
10 peano2uz2 9424 . . . . . 6  |-  ( ( N  e.  ZZ  /\  y  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( y  +  1 )  e.  { z  e.  ZZ  |  N  <_  z } )
112, 10mpan 424 . . . . 5  |-  ( y  e.  { z  e.  ZZ  |  N  <_ 
z }  ->  (
y  +  1 )  e.  { z  e.  ZZ  |  N  <_ 
z } )
1211rgen 2547 . . . 4  |-  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e.  { z  e.  ZZ  |  N  <_  z }
13 zex 9326 . . . . . 6  |-  ZZ  e.  _V
1413rabex 4173 . . . . 5  |-  { z  e.  ZZ  |  N  <_  z }  e.  _V
15 eleq2 2257 . . . . . 6  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  ( N  e.  x  <->  N  e.  { z  e.  ZZ  |  N  <_  z } ) )
16 eleq2 2257 . . . . . . 7  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
1716raleqbi1dv 2702 . . . . . 6  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e.  { z  e.  ZZ  |  N  <_  z } ) )
1815, 17anbi12d 473 . . . . 5  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  (
( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( N  e.  {
z  e.  ZZ  |  N  <_  z }  /\  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e. 
{ z  e.  ZZ  |  N  <_  z } ) ) )
1914, 18elab 2904 . . . 4  |-  ( { z  e.  ZZ  |  N  <_  z }  e.  { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }  <-> 
( N  e.  {
z  e.  ZZ  |  N  <_  z }  /\  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
209, 12, 19mpbir2an 944 . . 3  |-  { z  e.  ZZ  |  N  <_  z }  e.  {
x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }
21 intss1 3885 . . 3  |-  ( { z  e.  ZZ  |  N  <_  z }  e.  { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }  ->  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  C_  { z  e.  ZZ  |  N  <_ 
z } )
2220, 21ax-mp 5 . 2  |-  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  C_  { z  e.  ZZ  |  N  <_  z }
234, 22eqssi 3195 1  |-  { z  e.  ZZ  |  N  <_  z }  =  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   {crab 2476    C_ wss 3153   |^|cint 3870   class class class wbr 4029  (class class class)co 5918   1c1 7873    + caddc 7875    <_ cle 8055   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator