ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfuzi Unicode version

Theorem dfuzi 9322
Description: An expression for the upper integers that start at  N that is analogous to dfnn2 8880 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
Hypothesis
Ref Expression
dfuz.1  |-  N  e.  ZZ
Assertion
Ref Expression
dfuzi  |-  { z  e.  ZZ  |  N  <_  z }  =  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }
Distinct variable group:    x, y, z, N

Proof of Theorem dfuzi
StepHypRef Expression
1 ssintab 3848 . . 3  |-  ( { z  e.  ZZ  |  N  <_  z }  C_  |^|
{ x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. x ( ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x )  ->  { z  e.  ZZ  |  N  <_  z } 
C_  x ) )
2 dfuz.1 . . . 4  |-  N  e.  ZZ
32peano5uzi 9321 . . 3  |-  ( ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  ->  { z  e.  ZZ  |  N  <_  z } 
C_  x )
41, 3mpgbir 1446 . 2  |-  { z  e.  ZZ  |  N  <_  z }  C_  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
52zrei 9218 . . . . . 6  |-  N  e.  RR
65leidi 8404 . . . . 5  |-  N  <_  N
7 breq2 3993 . . . . . 6  |-  ( z  =  N  ->  ( N  <_  z  <->  N  <_  N ) )
87elrab 2886 . . . . 5  |-  ( N  e.  { z  e.  ZZ  |  N  <_ 
z }  <->  ( N  e.  ZZ  /\  N  <_  N ) )
92, 6, 8mpbir2an 937 . . . 4  |-  N  e. 
{ z  e.  ZZ  |  N  <_  z }
10 peano2uz2 9319 . . . . . 6  |-  ( ( N  e.  ZZ  /\  y  e.  { z  e.  ZZ  |  N  <_ 
z } )  -> 
( y  +  1 )  e.  { z  e.  ZZ  |  N  <_  z } )
112, 10mpan 422 . . . . 5  |-  ( y  e.  { z  e.  ZZ  |  N  <_ 
z }  ->  (
y  +  1 )  e.  { z  e.  ZZ  |  N  <_ 
z } )
1211rgen 2523 . . . 4  |-  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e.  { z  e.  ZZ  |  N  <_  z }
13 zex 9221 . . . . . 6  |-  ZZ  e.  _V
1413rabex 4133 . . . . 5  |-  { z  e.  ZZ  |  N  <_  z }  e.  _V
15 eleq2 2234 . . . . . 6  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  ( N  e.  x  <->  N  e.  { z  e.  ZZ  |  N  <_  z } ) )
16 eleq2 2234 . . . . . . 7  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
1716raleqbi1dv 2673 . . . . . 6  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e.  { z  e.  ZZ  |  N  <_  z } ) )
1815, 17anbi12d 470 . . . . 5  |-  ( x  =  { z  e.  ZZ  |  N  <_ 
z }  ->  (
( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( N  e.  {
z  e.  ZZ  |  N  <_  z }  /\  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e. 
{ z  e.  ZZ  |  N  <_  z } ) ) )
1914, 18elab 2874 . . . 4  |-  ( { z  e.  ZZ  |  N  <_  z }  e.  { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }  <-> 
( N  e.  {
z  e.  ZZ  |  N  <_  z }  /\  A. y  e.  { z  e.  ZZ  |  N  <_  z }  ( y  +  1 )  e. 
{ z  e.  ZZ  |  N  <_  z } ) )
209, 12, 19mpbir2an 937 . . 3  |-  { z  e.  ZZ  |  N  <_  z }  e.  {
x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }
21 intss1 3846 . . 3  |-  ( { z  e.  ZZ  |  N  <_  z }  e.  { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }  ->  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  C_  { z  e.  ZZ  |  N  <_ 
z } )
2220, 21ax-mp 5 . 2  |-  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  C_  { z  e.  ZZ  |  N  <_  z }
234, 22eqssi 3163 1  |-  { z  e.  ZZ  |  N  <_  z }  =  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   {crab 2452    C_ wss 3121   |^|cint 3831   class class class wbr 3989  (class class class)co 5853   1c1 7775    + caddc 7777    <_ cle 7955   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator