ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssintrab Unicode version

Theorem ssintrab 3854
Description: Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.)
Assertion
Ref Expression
ssintrab  |-  ( A 
C_  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  C_  x
) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem ssintrab
StepHypRef Expression
1 df-rab 2457 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
21inteqi 3835 . . 3  |-  |^| { x  e.  B  |  ph }  =  |^| { x  |  ( x  e.  B  /\  ph ) }
32sseq2i 3174 . 2  |-  ( A 
C_  |^| { x  e.  B  |  ph }  <->  A 
C_  |^| { x  |  ( x  e.  B  /\  ph ) } )
4 impexp 261 . . . 4  |-  ( ( ( x  e.  B  /\  ph )  ->  A  C_  x )  <->  ( x  e.  B  ->  ( ph  ->  A  C_  x )
) )
54albii 1463 . . 3  |-  ( A. x ( ( x  e.  B  /\  ph )  ->  A  C_  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  C_  x
) ) )
6 ssintab 3848 . . 3  |-  ( A 
C_  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x
( ( x  e.  B  /\  ph )  ->  A  C_  x )
)
7 df-ral 2453 . . 3  |-  ( A. x  e.  B  ( ph  ->  A  C_  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  C_  x
) ) )
85, 6, 73bitr4i 211 . 2  |-  ( A 
C_  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x  e.  B  ( ph  ->  A  C_  x )
)
93, 8bitri 183 1  |-  ( A 
C_  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  C_  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    e. wcel 2141   {cab 2156   A.wral 2448   {crab 2452    C_ wss 3121   |^|cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134  df-int 3832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator