ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssintrab Unicode version

Theorem ssintrab 3879
Description: Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.)
Assertion
Ref Expression
ssintrab  |-  ( A 
C_  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  C_  x
) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem ssintrab
StepHypRef Expression
1 df-rab 2474 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
21inteqi 3860 . . 3  |-  |^| { x  e.  B  |  ph }  =  |^| { x  |  ( x  e.  B  /\  ph ) }
32sseq2i 3194 . 2  |-  ( A 
C_  |^| { x  e.  B  |  ph }  <->  A 
C_  |^| { x  |  ( x  e.  B  /\  ph ) } )
4 impexp 263 . . . 4  |-  ( ( ( x  e.  B  /\  ph )  ->  A  C_  x )  <->  ( x  e.  B  ->  ( ph  ->  A  C_  x )
) )
54albii 1480 . . 3  |-  ( A. x ( ( x  e.  B  /\  ph )  ->  A  C_  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  C_  x
) ) )
6 ssintab 3873 . . 3  |-  ( A 
C_  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x
( ( x  e.  B  /\  ph )  ->  A  C_  x )
)
7 df-ral 2470 . . 3  |-  ( A. x  e.  B  ( ph  ->  A  C_  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  C_  x
) ) )
85, 6, 73bitr4i 212 . 2  |-  ( A 
C_  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x  e.  B  ( ph  ->  A  C_  x )
)
93, 8bitri 184 1  |-  ( A 
C_  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  C_  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1361    e. wcel 2158   {cab 2173   A.wral 2465   {crab 2469    C_ wss 3141   |^|cint 3856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rab 2474  df-v 2751  df-in 3147  df-ss 3154  df-int 3857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator