Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssintrab Unicode version

Theorem ssintrab 3794
 Description: Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.)
Assertion
Ref Expression
ssintrab
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem ssintrab
StepHypRef Expression
1 df-rab 2425 . . . 4
21inteqi 3775 . . 3
32sseq2i 3124 . 2
4 impexp 261 . . . 4
54albii 1446 . . 3
6 ssintab 3788 . . 3
7 df-ral 2421 . . 3
85, 6, 73bitr4i 211 . 2
93, 8bitri 183 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104  wal 1329   wcel 1480  cab 2125  wral 2416  crab 2420   wss 3071  cint 3771 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rab 2425  df-v 2688  df-in 3077  df-ss 3084  df-int 3772 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator