| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssintab | GIF version | ||
| Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| ssintab | ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 3918 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ⊆ 𝑦) | |
| 2 | sseq2 3228 | . . 3 ⊢ (𝑦 = 𝑥 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑥)) | |
| 3 | 2 | ralab2 2947 | . 2 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ⊆ 𝑦 ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
| 4 | 1, 3 | bitri 184 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1373 {cab 2195 ∀wral 2488 ⊆ wss 3177 ∩ cint 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-v 2781 df-in 3183 df-ss 3190 df-int 3903 |
| This theorem is referenced by: ssmin 3921 ssintrab 3925 intmin4 3930 dfuzi 9525 |
| Copyright terms: Public domain | W3C validator |