ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopab4 Unicode version

Theorem funopab4 5255
Description: A class of ordered pairs of values in the form used by df-mpt 4068 is a function. (Contributed by NM, 17-Feb-2013.)
Assertion
Ref Expression
funopab4  |-  Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem funopab4
StepHypRef Expression
1 simpr 110 . . 3  |-  ( (
ph  /\  y  =  A )  ->  y  =  A )
21ssopab2i 4279 . 2  |-  { <. x ,  y >.  |  (
ph  /\  y  =  A ) }  C_  {
<. x ,  y >.  |  y  =  A }
3 funopabeq 5254 . 2  |-  Fun  { <. x ,  y >.  |  y  =  A }
4 funss 5237 . 2  |-  ( {
<. x ,  y >.  |  ( ph  /\  y  =  A ) }  C_  { <. x ,  y >.  |  y  =  A }  ->  ( Fun  { <. x ,  y >.  |  y  =  A }  ->  Fun 
{ <. x ,  y
>.  |  ( ph  /\  y  =  A ) } ) )
52, 3, 4mp2 16 1  |-  Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    C_ wss 3131   {copab 4065   Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-fun 5220
This theorem is referenced by:  funmpt  5256
  Copyright terms: Public domain W3C validator