ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopab4 Unicode version

Theorem funopab4 5224
Description: A class of ordered pairs of values in the form used by df-mpt 4044 is a function. (Contributed by NM, 17-Feb-2013.)
Assertion
Ref Expression
funopab4  |-  Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem funopab4
StepHypRef Expression
1 simpr 109 . . 3  |-  ( (
ph  /\  y  =  A )  ->  y  =  A )
21ssopab2i 4254 . 2  |-  { <. x ,  y >.  |  (
ph  /\  y  =  A ) }  C_  {
<. x ,  y >.  |  y  =  A }
3 funopabeq 5223 . 2  |-  Fun  { <. x ,  y >.  |  y  =  A }
4 funss 5206 . 2  |-  ( {
<. x ,  y >.  |  ( ph  /\  y  =  A ) }  C_  { <. x ,  y >.  |  y  =  A }  ->  ( Fun  { <. x ,  y >.  |  y  =  A }  ->  Fun 
{ <. x ,  y
>.  |  ( ph  /\  y  =  A ) } ) )
52, 3, 4mp2 16 1  |-  Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    C_ wss 3115   {copab 4041   Fun wfun 5181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-fun 5189
This theorem is referenced by:  funmpt  5225
  Copyright terms: Public domain W3C validator