ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopab4 Unicode version

Theorem funopab4 5208
Description: A class of ordered pairs of values in the form used by df-mpt 4028 is a function. (Contributed by NM, 17-Feb-2013.)
Assertion
Ref Expression
funopab4  |-  Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem funopab4
StepHypRef Expression
1 simpr 109 . . 3  |-  ( (
ph  /\  y  =  A )  ->  y  =  A )
21ssopab2i 4238 . 2  |-  { <. x ,  y >.  |  (
ph  /\  y  =  A ) }  C_  {
<. x ,  y >.  |  y  =  A }
3 funopabeq 5207 . 2  |-  Fun  { <. x ,  y >.  |  y  =  A }
4 funss 5190 . 2  |-  ( {
<. x ,  y >.  |  ( ph  /\  y  =  A ) }  C_  { <. x ,  y >.  |  y  =  A }  ->  ( Fun  { <. x ,  y >.  |  y  =  A }  ->  Fun 
{ <. x ,  y
>.  |  ( ph  /\  y  =  A ) } ) )
52, 3, 4mp2 16 1  |-  Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335    C_ wss 3102   {copab 4025   Fun wfun 5165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3967  df-opab 4027  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-fun 5173
This theorem is referenced by:  funmpt  5209
  Copyright terms: Public domain W3C validator