ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopab4 Unicode version

Theorem funopab4 5002
Description: A class of ordered pairs of values in the form used by df-mpt 3867 is a function. (Contributed by NM, 17-Feb-2013.)
Assertion
Ref Expression
funopab4  |-  Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem funopab4
StepHypRef Expression
1 simpr 108 . . 3  |-  ( (
ph  /\  y  =  A )  ->  y  =  A )
21ssopab2i 4067 . 2  |-  { <. x ,  y >.  |  (
ph  /\  y  =  A ) }  C_  {
<. x ,  y >.  |  y  =  A }
3 funopabeq 5001 . 2  |-  Fun  { <. x ,  y >.  |  y  =  A }
4 funss 4985 . 2  |-  ( {
<. x ,  y >.  |  ( ph  /\  y  =  A ) }  C_  { <. x ,  y >.  |  y  =  A }  ->  ( Fun  { <. x ,  y >.  |  y  =  A }  ->  Fun 
{ <. x ,  y
>.  |  ( ph  /\  y  =  A ) } ) )
52, 3, 4mp2 16 1  |-  Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1285    C_ wss 2984   {copab 3864   Fun wfun 4961
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-opab 3866  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-fun 4969
This theorem is referenced by:  funmpt  5003
  Copyright terms: Public domain W3C validator