ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssopab2b Unicode version

Theorem ssopab2b 4156
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
ssopab2b  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)

Proof of Theorem ssopab2b
StepHypRef Expression
1 nfopab1 3955 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ph }
2 nfopab1 3955 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ps }
31, 2nfss 3054 . . 3  |-  F/ x { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }
4 nfopab2 3956 . . . . 5  |-  F/_ y { <. x ,  y
>.  |  ph }
5 nfopab2 3956 . . . . 5  |-  F/_ y { <. x ,  y
>.  |  ps }
64, 5nfss 3054 . . . 4  |-  F/ y { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }
7 ssel 3055 . . . . 5  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  ( <. x ,  y >.  e.  { <. x ,  y >.  |  ph }  ->  <. x ,  y >.  e.  { <. x ,  y >.  |  ps } ) )
8 opabid 4137 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
9 opabid 4137 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ps }  <->  ps )
107, 8, 93imtr3g 203 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  ( ph  ->  ps ) )
116, 10alrimi 1483 . . 3  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  A. y ( ph  ->  ps ) )
123, 11alrimi 1483 . 2  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  A. x A. y
( ph  ->  ps )
)
13 ssopab2 4155 . 2  |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } )
1412, 13impbii 125 1  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1310    e. wcel 1461    C_ wss 3035   <.cop 3494   {copab 3946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-opab 3948
This theorem is referenced by:  eqopab2b  4159  dffun2  5089
  Copyright terms: Public domain W3C validator