Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssopab2b | Unicode version |
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
ssopab2b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfopab1 4029 | . . . 4 | |
2 | nfopab1 4029 | . . . 4 | |
3 | 1, 2 | nfss 3117 | . . 3 |
4 | nfopab2 4030 | . . . . 5 | |
5 | nfopab2 4030 | . . . . 5 | |
6 | 4, 5 | nfss 3117 | . . . 4 |
7 | ssel 3118 | . . . . 5 | |
8 | opabid 4212 | . . . . 5 | |
9 | opabid 4212 | . . . . 5 | |
10 | 7, 8, 9 | 3imtr3g 203 | . . . 4 |
11 | 6, 10 | alrimi 1499 | . . 3 |
12 | 3, 11 | alrimi 1499 | . 2 |
13 | ssopab2 4230 | . 2 | |
14 | 12, 13 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1330 wcel 2125 wss 3098 cop 3559 copab 4020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-opab 4022 |
This theorem is referenced by: eqopab2b 4234 dffun2 5173 |
Copyright terms: Public domain | W3C validator |