ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssopab2b Unicode version

Theorem ssopab2b 4231
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
ssopab2b  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)

Proof of Theorem ssopab2b
StepHypRef Expression
1 nfopab1 4029 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ph }
2 nfopab1 4029 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ps }
31, 2nfss 3117 . . 3  |-  F/ x { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }
4 nfopab2 4030 . . . . 5  |-  F/_ y { <. x ,  y
>.  |  ph }
5 nfopab2 4030 . . . . 5  |-  F/_ y { <. x ,  y
>.  |  ps }
64, 5nfss 3117 . . . 4  |-  F/ y { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }
7 ssel 3118 . . . . 5  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  ( <. x ,  y >.  e.  { <. x ,  y >.  |  ph }  ->  <. x ,  y >.  e.  { <. x ,  y >.  |  ps } ) )
8 opabid 4212 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
9 opabid 4212 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ps }  <->  ps )
107, 8, 93imtr3g 203 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  ( ph  ->  ps ) )
116, 10alrimi 1499 . . 3  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  A. y ( ph  ->  ps ) )
123, 11alrimi 1499 . 2  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  A. x A. y
( ph  ->  ps )
)
13 ssopab2 4230 . 2  |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } )
1412, 13impbii 125 1  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1330    e. wcel 2125    C_ wss 3098   <.cop 3559   {copab 4020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-opab 4022
This theorem is referenced by:  eqopab2b  4234  dffun2  5173
  Copyright terms: Public domain W3C validator