ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssopab2b Unicode version

Theorem ssopab2b 4307
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
ssopab2b  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)

Proof of Theorem ssopab2b
StepHypRef Expression
1 nfopab1 4098 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ph }
2 nfopab1 4098 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ps }
31, 2nfss 3172 . . 3  |-  F/ x { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }
4 nfopab2 4099 . . . . 5  |-  F/_ y { <. x ,  y
>.  |  ph }
5 nfopab2 4099 . . . . 5  |-  F/_ y { <. x ,  y
>.  |  ps }
64, 5nfss 3172 . . . 4  |-  F/ y { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }
7 ssel 3173 . . . . 5  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  ( <. x ,  y >.  e.  { <. x ,  y >.  |  ph }  ->  <. x ,  y >.  e.  { <. x ,  y >.  |  ps } ) )
8 opabid 4286 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
9 opabid 4286 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ps }  <->  ps )
107, 8, 93imtr3g 204 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  ( ph  ->  ps ) )
116, 10alrimi 1533 . . 3  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  A. y ( ph  ->  ps ) )
123, 11alrimi 1533 . 2  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  A. x A. y
( ph  ->  ps )
)
13 ssopab2 4306 . 2  |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } )
1412, 13impbii 126 1  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    e. wcel 2164    C_ wss 3153   <.cop 3621   {copab 4089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091
This theorem is referenced by:  eqopab2b  4310  dffun2  5264
  Copyright terms: Public domain W3C validator