ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgfval Unicode version

Theorem eqgfval 13591
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
eqgval.x  |-  X  =  ( Base `  G
)
eqgval.n  |-  N  =  ( invg `  G )
eqgval.p  |-  .+  =  ( +g  `  G )
eqgval.r  |-  R  =  ( G ~QG  S )
Assertion
Ref Expression
eqgfval  |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
Distinct variable groups:    x, y, G   
x, N, y    x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    R( x, y)    V( x, y)

Proof of Theorem eqgfval
Dummy variables  g  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.r . 2  |-  R  =  ( G ~QG  S )
2 elex 2783 . . . 4  |-  ( G  e.  V  ->  G  e.  _V )
32adantr 276 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  G  e.  _V )
4 eqgval.x . . . . . 6  |-  X  =  ( Base `  G
)
5 basfn 12923 . . . . . . 7  |-  Base  Fn  _V
6 funfvex 5595 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
76funfni 5377 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
85, 2, 7sylancr 414 . . . . . 6  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
94, 8eqeltrid 2292 . . . . 5  |-  ( G  e.  V  ->  X  e.  _V )
109adantr 276 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  X  e.  _V )
11 simpr 110 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  S  C_  X )
1210, 11ssexd 4185 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  S  e.  _V )
13 xpexg 4790 . . . . 5  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
1410, 10, 13syl2anc 411 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( X  X.  X
)  e.  _V )
15 simpl 109 . . . . . . . 8  |-  ( ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S )  ->  { x ,  y }  C_  X
)
16 vex 2775 . . . . . . . . 9  |-  x  e. 
_V
17 vex 2775 . . . . . . . . 9  |-  y  e. 
_V
1816, 17prss 3789 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  X )  <->  { x ,  y } 
C_  X )
1915, 18sylibr 134 . . . . . . 7  |-  ( ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S )  ->  ( x  e.  X  /\  y  e.  X ) )
2019ssopab2i 4325 . . . . . 6  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }  C_  { <. x ,  y >.  |  ( x  e.  X  /\  y  e.  X ) }
21 df-xp 4682 . . . . . 6  |-  ( X  X.  X )  =  { <. x ,  y
>.  |  ( x  e.  X  /\  y  e.  X ) }
2220, 21sseqtrri 3228 . . . . 5  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }  C_  ( X  X.  X )
2322a1i 9 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) }  C_  ( X  X.  X
) )
2414, 23ssexd 4185 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) }  e.  _V )
25 simpl 109 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  g  =  G )
2625fveq2d 5582 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( Base `  g
)  =  ( Base `  G ) )
2726, 4eqtr4di 2256 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  ( Base `  g
)  =  X )
2827sseq2d 3223 . . . . . 6  |-  ( ( g  =  G  /\  s  =  S )  ->  ( { x ,  y }  C_  ( Base `  g )  <->  { x ,  y }  C_  X ) )
2925fveq2d 5582 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  ( +g  `  g
)  =  ( +g  `  G ) )
30 eqgval.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
3129, 30eqtr4di 2256 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( +g  `  g
)  =  .+  )
3225fveq2d 5582 . . . . . . . . . 10  |-  ( ( g  =  G  /\  s  =  S )  ->  ( invg `  g )  =  ( invg `  G
) )
33 eqgval.n . . . . . . . . . 10  |-  N  =  ( invg `  G )
3432, 33eqtr4di 2256 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  ( invg `  g )  =  N )
3534fveq1d 5580 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( invg `  g ) `  x
)  =  ( N `
 x ) )
36 eqidd 2206 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  y  =  y )
3731, 35, 36oveq123d 5967 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( ( invg `  g ) `
 x ) ( +g  `  g ) y )  =  ( ( N `  x
)  .+  y )
)
38 simpr 110 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  s  =  S )
3937, 38eleq12d 2276 . . . . . 6  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( ( ( invg `  g
) `  x )
( +g  `  g ) y )  e.  s  <-> 
( ( N `  x )  .+  y
)  e.  S ) )
4028, 39anbi12d 473 . . . . 5  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( { x ,  y }  C_  ( Base `  g )  /\  ( ( ( invg `  g ) `
 x ) ( +g  `  g ) y )  e.  s )  <->  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) ) )
4140opabbidv 4111 . . . 4  |-  ( ( g  =  G  /\  s  =  S )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  g
)  /\  ( (
( invg `  g ) `  x
) ( +g  `  g
) y )  e.  s ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) } )
42 df-eqg 13541 . . . 4  |- ~QG  =  ( g  e.  _V ,  s  e. 
_V  |->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  g )  /\  (
( ( invg `  g ) `  x
) ( +g  `  g
) y )  e.  s ) } )
4341, 42ovmpoga 6077 . . 3  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) }  e.  _V )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
443, 12, 24, 43syl3anc 1250 . 2  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) } )
451, 44eqtrid 2250 1  |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   {cpr 3634   {copab 4105    X. cxp 4674    Fn wfn 5267   ` cfv 5272  (class class class)co 5946   Basecbs 12865   +g cplusg 12942   invgcminusg 13366   ~QG cqg 13538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-inn 9039  df-ndx 12868  df-slot 12869  df-base 12871  df-eqg 13541
This theorem is referenced by:  eqgval  13592
  Copyright terms: Public domain W3C validator