ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgfval Unicode version

Theorem eqgfval 13428
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
eqgval.x  |-  X  =  ( Base `  G
)
eqgval.n  |-  N  =  ( invg `  G )
eqgval.p  |-  .+  =  ( +g  `  G )
eqgval.r  |-  R  =  ( G ~QG  S )
Assertion
Ref Expression
eqgfval  |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
Distinct variable groups:    x, y, G   
x, N, y    x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    R( x, y)    V( x, y)

Proof of Theorem eqgfval
Dummy variables  g  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.r . 2  |-  R  =  ( G ~QG  S )
2 elex 2774 . . . 4  |-  ( G  e.  V  ->  G  e.  _V )
32adantr 276 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  G  e.  _V )
4 eqgval.x . . . . . 6  |-  X  =  ( Base `  G
)
5 basfn 12761 . . . . . . 7  |-  Base  Fn  _V
6 funfvex 5578 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
76funfni 5361 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
85, 2, 7sylancr 414 . . . . . 6  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
94, 8eqeltrid 2283 . . . . 5  |-  ( G  e.  V  ->  X  e.  _V )
109adantr 276 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  X  e.  _V )
11 simpr 110 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  S  C_  X )
1210, 11ssexd 4174 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  S  e.  _V )
13 xpexg 4778 . . . . 5  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
1410, 10, 13syl2anc 411 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( X  X.  X
)  e.  _V )
15 simpl 109 . . . . . . . 8  |-  ( ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S )  ->  { x ,  y }  C_  X
)
16 vex 2766 . . . . . . . . 9  |-  x  e. 
_V
17 vex 2766 . . . . . . . . 9  |-  y  e. 
_V
1816, 17prss 3779 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  X )  <->  { x ,  y } 
C_  X )
1915, 18sylibr 134 . . . . . . 7  |-  ( ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S )  ->  ( x  e.  X  /\  y  e.  X ) )
2019ssopab2i 4313 . . . . . 6  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }  C_  { <. x ,  y >.  |  ( x  e.  X  /\  y  e.  X ) }
21 df-xp 4670 . . . . . 6  |-  ( X  X.  X )  =  { <. x ,  y
>.  |  ( x  e.  X  /\  y  e.  X ) }
2220, 21sseqtrri 3219 . . . . 5  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }  C_  ( X  X.  X )
2322a1i 9 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) }  C_  ( X  X.  X
) )
2414, 23ssexd 4174 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) }  e.  _V )
25 simpl 109 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  g  =  G )
2625fveq2d 5565 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( Base `  g
)  =  ( Base `  G ) )
2726, 4eqtr4di 2247 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  ( Base `  g
)  =  X )
2827sseq2d 3214 . . . . . 6  |-  ( ( g  =  G  /\  s  =  S )  ->  ( { x ,  y }  C_  ( Base `  g )  <->  { x ,  y }  C_  X ) )
2925fveq2d 5565 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  ( +g  `  g
)  =  ( +g  `  G ) )
30 eqgval.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
3129, 30eqtr4di 2247 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( +g  `  g
)  =  .+  )
3225fveq2d 5565 . . . . . . . . . 10  |-  ( ( g  =  G  /\  s  =  S )  ->  ( invg `  g )  =  ( invg `  G
) )
33 eqgval.n . . . . . . . . . 10  |-  N  =  ( invg `  G )
3432, 33eqtr4di 2247 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  ( invg `  g )  =  N )
3534fveq1d 5563 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( invg `  g ) `  x
)  =  ( N `
 x ) )
36 eqidd 2197 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  y  =  y )
3731, 35, 36oveq123d 5946 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( ( invg `  g ) `
 x ) ( +g  `  g ) y )  =  ( ( N `  x
)  .+  y )
)
38 simpr 110 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  s  =  S )
3937, 38eleq12d 2267 . . . . . 6  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( ( ( invg `  g
) `  x )
( +g  `  g ) y )  e.  s  <-> 
( ( N `  x )  .+  y
)  e.  S ) )
4028, 39anbi12d 473 . . . . 5  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( { x ,  y }  C_  ( Base `  g )  /\  ( ( ( invg `  g ) `
 x ) ( +g  `  g ) y )  e.  s )  <->  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) ) )
4140opabbidv 4100 . . . 4  |-  ( ( g  =  G  /\  s  =  S )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  g
)  /\  ( (
( invg `  g ) `  x
) ( +g  `  g
) y )  e.  s ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) } )
42 df-eqg 13378 . . . 4  |- ~QG  =  ( g  e.  _V ,  s  e. 
_V  |->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  g )  /\  (
( ( invg `  g ) `  x
) ( +g  `  g
) y )  e.  s ) } )
4341, 42ovmpoga 6056 . . 3  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) }  e.  _V )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
443, 12, 24, 43syl3anc 1249 . 2  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) } )
451, 44eqtrid 2241 1  |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   {cpr 3624   {copab 4094    X. cxp 4662    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   invgcminusg 13203   ~QG cqg 13375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-eqg 13378
This theorem is referenced by:  eqgval  13429
  Copyright terms: Public domain W3C validator