ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgfval Unicode version

Theorem eqgfval 13086
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
eqgval.x  |-  X  =  ( Base `  G
)
eqgval.n  |-  N  =  ( invg `  G )
eqgval.p  |-  .+  =  ( +g  `  G )
eqgval.r  |-  R  =  ( G ~QG  S )
Assertion
Ref Expression
eqgfval  |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
Distinct variable groups:    x, y, G   
x, N, y    x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    R( x, y)    V( x, y)

Proof of Theorem eqgfval
Dummy variables  g  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.r . 2  |-  R  =  ( G ~QG  S )
2 elex 2750 . . . 4  |-  ( G  e.  V  ->  G  e.  _V )
32adantr 276 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  G  e.  _V )
4 eqgval.x . . . . . 6  |-  X  =  ( Base `  G
)
5 basfn 12522 . . . . . . 7  |-  Base  Fn  _V
6 funfvex 5534 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
76funfni 5318 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
85, 2, 7sylancr 414 . . . . . 6  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
94, 8eqeltrid 2264 . . . . 5  |-  ( G  e.  V  ->  X  e.  _V )
109adantr 276 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  X  e.  _V )
11 simpr 110 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  S  C_  X )
1210, 11ssexd 4145 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  S  e.  _V )
13 xpexg 4742 . . . . 5  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
1410, 10, 13syl2anc 411 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( X  X.  X
)  e.  _V )
15 simpl 109 . . . . . . . 8  |-  ( ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S )  ->  { x ,  y }  C_  X
)
16 vex 2742 . . . . . . . . 9  |-  x  e. 
_V
17 vex 2742 . . . . . . . . 9  |-  y  e. 
_V
1816, 17prss 3750 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  X )  <->  { x ,  y } 
C_  X )
1915, 18sylibr 134 . . . . . . 7  |-  ( ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S )  ->  ( x  e.  X  /\  y  e.  X ) )
2019ssopab2i 4279 . . . . . 6  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }  C_  { <. x ,  y >.  |  ( x  e.  X  /\  y  e.  X ) }
21 df-xp 4634 . . . . . 6  |-  ( X  X.  X )  =  { <. x ,  y
>.  |  ( x  e.  X  /\  y  e.  X ) }
2220, 21sseqtrri 3192 . . . . 5  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }  C_  ( X  X.  X )
2322a1i 9 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) }  C_  ( X  X.  X
) )
2414, 23ssexd 4145 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) }  e.  _V )
25 simpl 109 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  g  =  G )
2625fveq2d 5521 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( Base `  g
)  =  ( Base `  G ) )
2726, 4eqtr4di 2228 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  ( Base `  g
)  =  X )
2827sseq2d 3187 . . . . . 6  |-  ( ( g  =  G  /\  s  =  S )  ->  ( { x ,  y }  C_  ( Base `  g )  <->  { x ,  y }  C_  X ) )
2925fveq2d 5521 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  ( +g  `  g
)  =  ( +g  `  G ) )
30 eqgval.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
3129, 30eqtr4di 2228 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( +g  `  g
)  =  .+  )
3225fveq2d 5521 . . . . . . . . . 10  |-  ( ( g  =  G  /\  s  =  S )  ->  ( invg `  g )  =  ( invg `  G
) )
33 eqgval.n . . . . . . . . . 10  |-  N  =  ( invg `  G )
3432, 33eqtr4di 2228 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  ( invg `  g )  =  N )
3534fveq1d 5519 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( invg `  g ) `  x
)  =  ( N `
 x ) )
36 eqidd 2178 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  y  =  y )
3731, 35, 36oveq123d 5898 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( ( invg `  g ) `
 x ) ( +g  `  g ) y )  =  ( ( N `  x
)  .+  y )
)
38 simpr 110 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  s  =  S )
3937, 38eleq12d 2248 . . . . . 6  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( ( ( invg `  g
) `  x )
( +g  `  g ) y )  e.  s  <-> 
( ( N `  x )  .+  y
)  e.  S ) )
4028, 39anbi12d 473 . . . . 5  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( { x ,  y }  C_  ( Base `  g )  /\  ( ( ( invg `  g ) `
 x ) ( +g  `  g ) y )  e.  s )  <->  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) ) )
4140opabbidv 4071 . . . 4  |-  ( ( g  =  G  /\  s  =  S )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  g
)  /\  ( (
( invg `  g ) `  x
) ( +g  `  g
) y )  e.  s ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) } )
42 df-eqg 13037 . . . 4  |- ~QG  =  ( g  e.  _V ,  s  e. 
_V  |->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  g )  /\  (
( ( invg `  g ) `  x
) ( +g  `  g
) y )  e.  s ) } )
4341, 42ovmpoga 6006 . . 3  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) }  e.  _V )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
443, 12, 24, 43syl3anc 1238 . 2  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) } )
451, 44eqtrid 2222 1  |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131   {cpr 3595   {copab 4065    X. cxp 4626    Fn wfn 5213   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   invgcminusg 12883   ~QG cqg 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-eqg 13037
This theorem is referenced by:  eqgval  13087
  Copyright terms: Public domain W3C validator