ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgfval Unicode version

Theorem eqgfval 13759
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
eqgval.x  |-  X  =  ( Base `  G
)
eqgval.n  |-  N  =  ( invg `  G )
eqgval.p  |-  .+  =  ( +g  `  G )
eqgval.r  |-  R  =  ( G ~QG  S )
Assertion
Ref Expression
eqgfval  |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
Distinct variable groups:    x, y, G   
x, N, y    x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    R( x, y)    V( x, y)

Proof of Theorem eqgfval
Dummy variables  g  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.r . 2  |-  R  =  ( G ~QG  S )
2 elex 2811 . . . 4  |-  ( G  e.  V  ->  G  e.  _V )
32adantr 276 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  G  e.  _V )
4 eqgval.x . . . . . 6  |-  X  =  ( Base `  G
)
5 basfn 13091 . . . . . . 7  |-  Base  Fn  _V
6 funfvex 5644 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
76funfni 5423 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
85, 2, 7sylancr 414 . . . . . 6  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
94, 8eqeltrid 2316 . . . . 5  |-  ( G  e.  V  ->  X  e.  _V )
109adantr 276 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  X  e.  _V )
11 simpr 110 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  S  C_  X )
1210, 11ssexd 4224 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  S  e.  _V )
13 xpexg 4833 . . . . 5  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
1410, 10, 13syl2anc 411 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( X  X.  X
)  e.  _V )
15 simpl 109 . . . . . . . 8  |-  ( ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S )  ->  { x ,  y }  C_  X
)
16 vex 2802 . . . . . . . . 9  |-  x  e. 
_V
17 vex 2802 . . . . . . . . 9  |-  y  e. 
_V
1816, 17prss 3824 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  X )  <->  { x ,  y } 
C_  X )
1915, 18sylibr 134 . . . . . . 7  |-  ( ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S )  ->  ( x  e.  X  /\  y  e.  X ) )
2019ssopab2i 4366 . . . . . 6  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }  C_  { <. x ,  y >.  |  ( x  e.  X  /\  y  e.  X ) }
21 df-xp 4725 . . . . . 6  |-  ( X  X.  X )  =  { <. x ,  y
>.  |  ( x  e.  X  /\  y  e.  X ) }
2220, 21sseqtrri 3259 . . . . 5  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }  C_  ( X  X.  X )
2322a1i 9 . . . 4  |-  ( ( G  e.  V  /\  S  C_  X )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) }  C_  ( X  X.  X
) )
2414, 23ssexd 4224 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) }  e.  _V )
25 simpl 109 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  g  =  G )
2625fveq2d 5631 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( Base `  g
)  =  ( Base `  G ) )
2726, 4eqtr4di 2280 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  ( Base `  g
)  =  X )
2827sseq2d 3254 . . . . . 6  |-  ( ( g  =  G  /\  s  =  S )  ->  ( { x ,  y }  C_  ( Base `  g )  <->  { x ,  y }  C_  X ) )
2925fveq2d 5631 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  ( +g  `  g
)  =  ( +g  `  G ) )
30 eqgval.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
3129, 30eqtr4di 2280 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( +g  `  g
)  =  .+  )
3225fveq2d 5631 . . . . . . . . . 10  |-  ( ( g  =  G  /\  s  =  S )  ->  ( invg `  g )  =  ( invg `  G
) )
33 eqgval.n . . . . . . . . . 10  |-  N  =  ( invg `  G )
3432, 33eqtr4di 2280 . . . . . . . . 9  |-  ( ( g  =  G  /\  s  =  S )  ->  ( invg `  g )  =  N )
3534fveq1d 5629 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( invg `  g ) `  x
)  =  ( N `
 x ) )
36 eqidd 2230 . . . . . . . 8  |-  ( ( g  =  G  /\  s  =  S )  ->  y  =  y )
3731, 35, 36oveq123d 6022 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( ( invg `  g ) `
 x ) ( +g  `  g ) y )  =  ( ( N `  x
)  .+  y )
)
38 simpr 110 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  S )  ->  s  =  S )
3937, 38eleq12d 2300 . . . . . 6  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( ( ( invg `  g
) `  x )
( +g  `  g ) y )  e.  s  <-> 
( ( N `  x )  .+  y
)  e.  S ) )
4028, 39anbi12d 473 . . . . 5  |-  ( ( g  =  G  /\  s  =  S )  ->  ( ( { x ,  y }  C_  ( Base `  g )  /\  ( ( ( invg `  g ) `
 x ) ( +g  `  g ) y )  e.  s )  <->  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) ) )
4140opabbidv 4150 . . . 4  |-  ( ( g  =  G  /\  s  =  S )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  g
)  /\  ( (
( invg `  g ) `  x
) ( +g  `  g
) y )  e.  s ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) } )
42 df-eqg 13709 . . . 4  |- ~QG  =  ( g  e.  _V ,  s  e. 
_V  |->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  g )  /\  (
( ( invg `  g ) `  x
) ( +g  `  g
) y )  e.  s ) } )
4341, 42ovmpoga 6134 . . 3  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) }  e.  _V )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
443, 12, 24, 43syl3anc 1271 . 2  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
) } )
451, 44eqtrid 2274 1  |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {cpr 3667   {copab 4144    X. cxp 4717    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   invgcminusg 13534   ~QG cqg 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-eqg 13709
This theorem is referenced by:  eqgval  13760
  Copyright terms: Public domain W3C validator