| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgfval | Unicode version | ||
| Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| eqgval.x |
|
| eqgval.n |
|
| eqgval.p |
|
| eqgval.r |
|
| Ref | Expression |
|---|---|
| eqgfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgval.r |
. 2
| |
| 2 | elex 2788 |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | eqgval.x |
. . . . . 6
| |
| 5 | basfn 13005 |
. . . . . . 7
| |
| 6 | funfvex 5616 |
. . . . . . . 8
| |
| 7 | 6 | funfni 5395 |
. . . . . . 7
|
| 8 | 5, 2, 7 | sylancr 414 |
. . . . . 6
|
| 9 | 4, 8 | eqeltrid 2294 |
. . . . 5
|
| 10 | 9 | adantr 276 |
. . . 4
|
| 11 | simpr 110 |
. . . 4
| |
| 12 | 10, 11 | ssexd 4200 |
. . 3
|
| 13 | xpexg 4807 |
. . . . 5
| |
| 14 | 10, 10, 13 | syl2anc 411 |
. . . 4
|
| 15 | simpl 109 |
. . . . . . . 8
| |
| 16 | vex 2779 |
. . . . . . . . 9
| |
| 17 | vex 2779 |
. . . . . . . . 9
| |
| 18 | 16, 17 | prss 3800 |
. . . . . . . 8
|
| 19 | 15, 18 | sylibr 134 |
. . . . . . 7
|
| 20 | 19 | ssopab2i 4342 |
. . . . . 6
|
| 21 | df-xp 4699 |
. . . . . 6
| |
| 22 | 20, 21 | sseqtrri 3236 |
. . . . 5
|
| 23 | 22 | a1i 9 |
. . . 4
|
| 24 | 14, 23 | ssexd 4200 |
. . 3
|
| 25 | simpl 109 |
. . . . . . . . 9
| |
| 26 | 25 | fveq2d 5603 |
. . . . . . . 8
|
| 27 | 26, 4 | eqtr4di 2258 |
. . . . . . 7
|
| 28 | 27 | sseq2d 3231 |
. . . . . 6
|
| 29 | 25 | fveq2d 5603 |
. . . . . . . . 9
|
| 30 | eqgval.p |
. . . . . . . . 9
| |
| 31 | 29, 30 | eqtr4di 2258 |
. . . . . . . 8
|
| 32 | 25 | fveq2d 5603 |
. . . . . . . . . 10
|
| 33 | eqgval.n |
. . . . . . . . . 10
| |
| 34 | 32, 33 | eqtr4di 2258 |
. . . . . . . . 9
|
| 35 | 34 | fveq1d 5601 |
. . . . . . . 8
|
| 36 | eqidd 2208 |
. . . . . . . 8
| |
| 37 | 31, 35, 36 | oveq123d 5988 |
. . . . . . 7
|
| 38 | simpr 110 |
. . . . . . 7
| |
| 39 | 37, 38 | eleq12d 2278 |
. . . . . 6
|
| 40 | 28, 39 | anbi12d 473 |
. . . . 5
|
| 41 | 40 | opabbidv 4126 |
. . . 4
|
| 42 | df-eqg 13623 |
. . . 4
| |
| 43 | 41, 42 | ovmpoga 6098 |
. . 3
|
| 44 | 3, 12, 24, 43 | syl3anc 1250 |
. 2
|
| 45 | 1, 44 | eqtrid 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 df-eqg 13623 |
| This theorem is referenced by: eqgval 13674 |
| Copyright terms: Public domain | W3C validator |