| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgfval | Unicode version | ||
| Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| eqgval.x |
|
| eqgval.n |
|
| eqgval.p |
|
| eqgval.r |
|
| Ref | Expression |
|---|---|
| eqgfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgval.r |
. 2
| |
| 2 | elex 2811 |
. . . 4
| |
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | eqgval.x |
. . . . . 6
| |
| 5 | basfn 13091 |
. . . . . . 7
| |
| 6 | funfvex 5644 |
. . . . . . . 8
| |
| 7 | 6 | funfni 5423 |
. . . . . . 7
|
| 8 | 5, 2, 7 | sylancr 414 |
. . . . . 6
|
| 9 | 4, 8 | eqeltrid 2316 |
. . . . 5
|
| 10 | 9 | adantr 276 |
. . . 4
|
| 11 | simpr 110 |
. . . 4
| |
| 12 | 10, 11 | ssexd 4224 |
. . 3
|
| 13 | xpexg 4833 |
. . . . 5
| |
| 14 | 10, 10, 13 | syl2anc 411 |
. . . 4
|
| 15 | simpl 109 |
. . . . . . . 8
| |
| 16 | vex 2802 |
. . . . . . . . 9
| |
| 17 | vex 2802 |
. . . . . . . . 9
| |
| 18 | 16, 17 | prss 3824 |
. . . . . . . 8
|
| 19 | 15, 18 | sylibr 134 |
. . . . . . 7
|
| 20 | 19 | ssopab2i 4366 |
. . . . . 6
|
| 21 | df-xp 4725 |
. . . . . 6
| |
| 22 | 20, 21 | sseqtrri 3259 |
. . . . 5
|
| 23 | 22 | a1i 9 |
. . . 4
|
| 24 | 14, 23 | ssexd 4224 |
. . 3
|
| 25 | simpl 109 |
. . . . . . . . 9
| |
| 26 | 25 | fveq2d 5631 |
. . . . . . . 8
|
| 27 | 26, 4 | eqtr4di 2280 |
. . . . . . 7
|
| 28 | 27 | sseq2d 3254 |
. . . . . 6
|
| 29 | 25 | fveq2d 5631 |
. . . . . . . . 9
|
| 30 | eqgval.p |
. . . . . . . . 9
| |
| 31 | 29, 30 | eqtr4di 2280 |
. . . . . . . 8
|
| 32 | 25 | fveq2d 5631 |
. . . . . . . . . 10
|
| 33 | eqgval.n |
. . . . . . . . . 10
| |
| 34 | 32, 33 | eqtr4di 2280 |
. . . . . . . . 9
|
| 35 | 34 | fveq1d 5629 |
. . . . . . . 8
|
| 36 | eqidd 2230 |
. . . . . . . 8
| |
| 37 | 31, 35, 36 | oveq123d 6022 |
. . . . . . 7
|
| 38 | simpr 110 |
. . . . . . 7
| |
| 39 | 37, 38 | eleq12d 2300 |
. . . . . 6
|
| 40 | 28, 39 | anbi12d 473 |
. . . . 5
|
| 41 | 40 | opabbidv 4150 |
. . . 4
|
| 42 | df-eqg 13709 |
. . . 4
| |
| 43 | 41, 42 | ovmpoga 6134 |
. . 3
|
| 44 | 3, 12, 24, 43 | syl3anc 1271 |
. 2
|
| 45 | 1, 44 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-eqg 13709 |
| This theorem is referenced by: eqgval 13760 |
| Copyright terms: Public domain | W3C validator |