Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssopab2 | Unicode version |
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.) |
Ref | Expression |
---|---|
ssopab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1529 | . . . 4 | |
2 | nfa1 1529 | . . . . . 6 | |
3 | sp 1499 | . . . . . . 7 | |
4 | 3 | anim2d 335 | . . . . . 6 |
5 | 2, 4 | eximd 1600 | . . . . 5 |
6 | 5 | sps 1525 | . . . 4 |
7 | 1, 6 | eximd 1600 | . . 3 |
8 | 7 | ss2abdv 3215 | . 2 |
9 | df-opab 4044 | . 2 | |
10 | df-opab 4044 | . 2 | |
11 | 8, 9, 10 | 3sstr4g 3185 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wex 1480 cab 2151 wss 3116 cop 3579 copab 4042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 df-opab 4044 |
This theorem is referenced by: ssopab2b 4254 ssopab2i 4255 ssopab2dv 4256 |
Copyright terms: Public domain | W3C validator |