ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssopab2 Unicode version

Theorem ssopab2 4310
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.)
Assertion
Ref Expression
ssopab2  |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } )

Proof of Theorem ssopab2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfa1 1555 . . . 4  |-  F/ x A. x A. y (
ph  ->  ps )
2 nfa1 1555 . . . . . 6  |-  F/ y A. y ( ph  ->  ps )
3 sp 1525 . . . . . . 7  |-  ( A. y ( ph  ->  ps )  ->  ( ph  ->  ps ) )
43anim2d 337 . . . . . 6  |-  ( A. y ( ph  ->  ps )  ->  ( (
z  =  <. x ,  y >.  /\  ph )  ->  ( z  = 
<. x ,  y >.  /\  ps ) ) )
52, 4eximd 1626 . . . . 5  |-  ( A. y ( ph  ->  ps )  ->  ( E. y ( z  = 
<. x ,  y >.  /\  ph )  ->  E. y
( z  =  <. x ,  y >.  /\  ps ) ) )
65sps 1551 . . . 4  |-  ( A. x A. y ( ph  ->  ps )  ->  ( E. y ( z  = 
<. x ,  y >.  /\  ph )  ->  E. y
( z  =  <. x ,  y >.  /\  ps ) ) )
71, 6eximd 1626 . . 3  |-  ( A. x A. y ( ph  ->  ps )  ->  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph )  ->  E. x E. y
( z  =  <. x ,  y >.  /\  ps ) ) )
87ss2abdv 3256 . 2  |-  ( A. x A. y ( ph  ->  ps )  ->  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  C_  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ps ) } )
9 df-opab 4095 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
10 df-opab 4095 . 2  |-  { <. x ,  y >.  |  ps }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ps ) }
118, 9, 103sstr4g 3226 1  |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   E.wex 1506   {cab 2182    C_ wss 3157   <.cop 3625   {copab 4093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170  df-opab 4095
This theorem is referenced by:  ssopab2b  4311  ssopab2i  4312  ssopab2dv  4313
  Copyright terms: Public domain W3C validator