Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssopab2 | Unicode version |
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.) |
Ref | Expression |
---|---|
ssopab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1534 | . . . 4 | |
2 | nfa1 1534 | . . . . . 6 | |
3 | sp 1504 | . . . . . . 7 | |
4 | 3 | anim2d 335 | . . . . . 6 |
5 | 2, 4 | eximd 1605 | . . . . 5 |
6 | 5 | sps 1530 | . . . 4 |
7 | 1, 6 | eximd 1605 | . . 3 |
8 | 7 | ss2abdv 3220 | . 2 |
9 | df-opab 4051 | . 2 | |
10 | df-opab 4051 | . 2 | |
11 | 8, 9, 10 | 3sstr4g 3190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wex 1485 cab 2156 wss 3121 cop 3586 copab 4049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-in 3127 df-ss 3134 df-opab 4051 |
This theorem is referenced by: ssopab2b 4261 ssopab2i 4262 ssopab2dv 4263 |
Copyright terms: Public domain | W3C validator |