Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssopab2 | Unicode version |
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.) |
Ref | Expression |
---|---|
ssopab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1521 | . . . 4 | |
2 | nfa1 1521 | . . . . . 6 | |
3 | sp 1491 | . . . . . . 7 | |
4 | 3 | anim2d 335 | . . . . . 6 |
5 | 2, 4 | eximd 1592 | . . . . 5 |
6 | 5 | sps 1517 | . . . 4 |
7 | 1, 6 | eximd 1592 | . . 3 |
8 | 7 | ss2abdv 3201 | . 2 |
9 | df-opab 4026 | . 2 | |
10 | df-opab 4026 | . 2 | |
11 | 8, 9, 10 | 3sstr4g 3171 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1333 wceq 1335 wex 1472 cab 2143 wss 3102 cop 3563 copab 4024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-in 3108 df-ss 3115 df-opab 4026 |
This theorem is referenced by: ssopab2b 4235 ssopab2i 4236 ssopab2dv 4237 |
Copyright terms: Public domain | W3C validator |