![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssopab2i | GIF version |
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2 4100 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | ax-gen 1383 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
4 | 1, 3 | mpg 1385 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1287 ⊆ wss 2999 {copab 3896 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-in 3005 df-ss 3012 df-opab 3898 |
This theorem is referenced by: brab2a 4487 opabssxp 4508 funopab4 5045 ssoprab2i 5729 npsspw 7020 |
Copyright terms: Public domain | W3C validator |