ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab2a Unicode version

Theorem brab2a 4728
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 9-Nov-2015.)
Hypotheses
Ref Expression
brab2a.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
brab2a.2  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) }
Assertion
Ref Expression
brab2a  |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y    ps, x, y
Allowed substitution hints:    ph( x, y)    R( x, y)

Proof of Theorem brab2a
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ph )  -> 
( x  e.  C  /\  y  e.  D
) )
21ssopab2i 4324 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } 
C_  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) }
3 brab2a.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) }
4 df-xp 4681 . . . 4  |-  ( C  X.  D )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  D ) }
52, 3, 43sstr4i 3234 . . 3  |-  R  C_  ( C  X.  D
)
65brel 4727 . 2  |-  ( A R B  ->  ( A  e.  C  /\  B  e.  D )
)
7 df-br 4045 . . . 4  |-  ( A R B  <->  <. A ,  B >.  e.  R )
83eleq2i 2272 . . . 4  |-  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
97, 8bitri 184 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
10 brab2a.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
1110opelopab2a 4311 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <->  ps ) )
129, 11bitrid 192 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ps ) )
136, 12biadan2 456 1  |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   <.cop 3636   class class class wbr 4044   {copab 4104    X. cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681
This theorem is referenced by:  lmbr  14685
  Copyright terms: Public domain W3C validator