| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssopab2dv | Unicode version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| ssopab2dv.1 |
|
| Ref | Expression |
|---|---|
| ssopab2dv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2dv.1 |
. . 3
| |
| 2 | 1 | alrimivv 1898 |
. 2
|
| 3 | ssopab2 4322 |
. 2
| |
| 4 | 2, 3 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-opab 4106 |
| This theorem is referenced by: xpss12 4782 coss1 4833 coss2 4834 cnvss 4851 shftfvalg 11129 shftfval 11132 reldvdsrsrg 13854 dvdsrvald 13855 dvdsrex 13860 sslm 14719 |
| Copyright terms: Public domain | W3C validator |