ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssopab2dv Unicode version

Theorem ssopab2dv 4325
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypothesis
Ref Expression
ssopab2dv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ssopab2dv  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  C_  {
<. x ,  y >.  |  ch } )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)

Proof of Theorem ssopab2dv
StepHypRef Expression
1 ssopab2dv.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21alrimivv 1898 . 2  |-  ( ph  ->  A. x A. y
( ps  ->  ch ) )
3 ssopab2 4322 . 2  |-  ( A. x A. y ( ps 
->  ch )  ->  { <. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ch } )
42, 3syl 14 1  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  C_  {
<. x ,  y >.  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    C_ wss 3166   {copab 4104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-in 3172  df-ss 3179  df-opab 4106
This theorem is referenced by:  xpss12  4782  coss1  4833  coss2  4834  cnvss  4851  shftfvalg  11129  shftfval  11132  reldvdsrsrg  13854  dvdsrvald  13855  dvdsrex  13860  sslm  14719
  Copyright terms: Public domain W3C validator