| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssprr | GIF version | ||
| Description: The subsets of a pair. (Contributed by Jim Kingdon, 11-Aug-2018.) |
| Ref | Expression |
|---|---|
| ssprr | ⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3500 | . . . 4 ⊢ ∅ ⊆ {𝐵, 𝐶} | |
| 2 | sseq1 3217 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ {𝐵, 𝐶} ↔ ∅ ⊆ {𝐵, 𝐶})) | |
| 3 | 1, 2 | mpbiri 168 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ {𝐵, 𝐶}) |
| 4 | snsspr1 3783 | . . . 4 ⊢ {𝐵} ⊆ {𝐵, 𝐶} | |
| 5 | sseq1 3217 | . . . 4 ⊢ (𝐴 = {𝐵} → (𝐴 ⊆ {𝐵, 𝐶} ↔ {𝐵} ⊆ {𝐵, 𝐶})) | |
| 6 | 4, 5 | mpbiri 168 | . . 3 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵, 𝐶}) |
| 7 | 3, 6 | jaoi 718 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵, 𝐶}) |
| 8 | snsspr2 3784 | . . . 4 ⊢ {𝐶} ⊆ {𝐵, 𝐶} | |
| 9 | sseq1 3217 | . . . 4 ⊢ (𝐴 = {𝐶} → (𝐴 ⊆ {𝐵, 𝐶} ↔ {𝐶} ⊆ {𝐵, 𝐶})) | |
| 10 | 8, 9 | mpbiri 168 | . . 3 ⊢ (𝐴 = {𝐶} → 𝐴 ⊆ {𝐵, 𝐶}) |
| 11 | eqimss 3248 | . . 3 ⊢ (𝐴 = {𝐵, 𝐶} → 𝐴 ⊆ {𝐵, 𝐶}) | |
| 12 | 10, 11 | jaoi 718 | . 2 ⊢ ((𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶}) → 𝐴 ⊆ {𝐵, 𝐶}) |
| 13 | 7, 12 | jaoi 718 | 1 ⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ⊆ wss 3167 ∅c0 3461 {csn 3634 {cpr 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pr 3641 |
| This theorem is referenced by: sstpr 3800 pwprss 3848 |
| Copyright terms: Public domain | W3C validator |