Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssprr | GIF version |
Description: The subsets of a pair. (Contributed by Jim Kingdon, 11-Aug-2018.) |
Ref | Expression |
---|---|
ssprr | ⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3447 | . . . 4 ⊢ ∅ ⊆ {𝐵, 𝐶} | |
2 | sseq1 3165 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ {𝐵, 𝐶} ↔ ∅ ⊆ {𝐵, 𝐶})) | |
3 | 1, 2 | mpbiri 167 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ {𝐵, 𝐶}) |
4 | snsspr1 3721 | . . . 4 ⊢ {𝐵} ⊆ {𝐵, 𝐶} | |
5 | sseq1 3165 | . . . 4 ⊢ (𝐴 = {𝐵} → (𝐴 ⊆ {𝐵, 𝐶} ↔ {𝐵} ⊆ {𝐵, 𝐶})) | |
6 | 4, 5 | mpbiri 167 | . . 3 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵, 𝐶}) |
7 | 3, 6 | jaoi 706 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵, 𝐶}) |
8 | snsspr2 3722 | . . . 4 ⊢ {𝐶} ⊆ {𝐵, 𝐶} | |
9 | sseq1 3165 | . . . 4 ⊢ (𝐴 = {𝐶} → (𝐴 ⊆ {𝐵, 𝐶} ↔ {𝐶} ⊆ {𝐵, 𝐶})) | |
10 | 8, 9 | mpbiri 167 | . . 3 ⊢ (𝐴 = {𝐶} → 𝐴 ⊆ {𝐵, 𝐶}) |
11 | eqimss 3196 | . . 3 ⊢ (𝐴 = {𝐵, 𝐶} → 𝐴 ⊆ {𝐵, 𝐶}) | |
12 | 10, 11 | jaoi 706 | . 2 ⊢ ((𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶}) → 𝐴 ⊆ {𝐵, 𝐶}) |
13 | 7, 12 | jaoi 706 | 1 ⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 = wceq 1343 ⊆ wss 3116 ∅c0 3409 {csn 3576 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pr 3583 |
This theorem is referenced by: sstpr 3737 pwprss 3785 |
Copyright terms: Public domain | W3C validator |