| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssprr | GIF version | ||
| Description: The subsets of a pair. (Contributed by Jim Kingdon, 11-Aug-2018.) |
| Ref | Expression |
|---|---|
| ssprr | ⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3530 | . . . 4 ⊢ ∅ ⊆ {𝐵, 𝐶} | |
| 2 | sseq1 3247 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ {𝐵, 𝐶} ↔ ∅ ⊆ {𝐵, 𝐶})) | |
| 3 | 1, 2 | mpbiri 168 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ {𝐵, 𝐶}) |
| 4 | snsspr1 3815 | . . . 4 ⊢ {𝐵} ⊆ {𝐵, 𝐶} | |
| 5 | sseq1 3247 | . . . 4 ⊢ (𝐴 = {𝐵} → (𝐴 ⊆ {𝐵, 𝐶} ↔ {𝐵} ⊆ {𝐵, 𝐶})) | |
| 6 | 4, 5 | mpbiri 168 | . . 3 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵, 𝐶}) |
| 7 | 3, 6 | jaoi 721 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵, 𝐶}) |
| 8 | snsspr2 3816 | . . . 4 ⊢ {𝐶} ⊆ {𝐵, 𝐶} | |
| 9 | sseq1 3247 | . . . 4 ⊢ (𝐴 = {𝐶} → (𝐴 ⊆ {𝐵, 𝐶} ↔ {𝐶} ⊆ {𝐵, 𝐶})) | |
| 10 | 8, 9 | mpbiri 168 | . . 3 ⊢ (𝐴 = {𝐶} → 𝐴 ⊆ {𝐵, 𝐶}) |
| 11 | eqimss 3278 | . . 3 ⊢ (𝐴 = {𝐵, 𝐶} → 𝐴 ⊆ {𝐵, 𝐶}) | |
| 12 | 10, 11 | jaoi 721 | . 2 ⊢ ((𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶}) → 𝐴 ⊆ {𝐵, 𝐶}) |
| 13 | 7, 12 | jaoi 721 | 1 ⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ⊆ wss 3197 ∅c0 3491 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pr 3673 |
| This theorem is referenced by: sstpr 3834 pwprss 3883 |
| Copyright terms: Public domain | W3C validator |