![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssprr | GIF version |
Description: The subsets of a pair. (Contributed by Jim Kingdon, 11-Aug-2018.) |
Ref | Expression |
---|---|
ssprr | ⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3462 | . . . 4 ⊢ ∅ ⊆ {𝐵, 𝐶} | |
2 | sseq1 3179 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ⊆ {𝐵, 𝐶} ↔ ∅ ⊆ {𝐵, 𝐶})) | |
3 | 1, 2 | mpbiri 168 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ⊆ {𝐵, 𝐶}) |
4 | snsspr1 3741 | . . . 4 ⊢ {𝐵} ⊆ {𝐵, 𝐶} | |
5 | sseq1 3179 | . . . 4 ⊢ (𝐴 = {𝐵} → (𝐴 ⊆ {𝐵, 𝐶} ↔ {𝐵} ⊆ {𝐵, 𝐶})) | |
6 | 4, 5 | mpbiri 168 | . . 3 ⊢ (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵, 𝐶}) |
7 | 3, 6 | jaoi 716 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵, 𝐶}) |
8 | snsspr2 3742 | . . . 4 ⊢ {𝐶} ⊆ {𝐵, 𝐶} | |
9 | sseq1 3179 | . . . 4 ⊢ (𝐴 = {𝐶} → (𝐴 ⊆ {𝐵, 𝐶} ↔ {𝐶} ⊆ {𝐵, 𝐶})) | |
10 | 8, 9 | mpbiri 168 | . . 3 ⊢ (𝐴 = {𝐶} → 𝐴 ⊆ {𝐵, 𝐶}) |
11 | eqimss 3210 | . . 3 ⊢ (𝐴 = {𝐵, 𝐶} → 𝐴 ⊆ {𝐵, 𝐶}) | |
12 | 10, 11 | jaoi 716 | . 2 ⊢ ((𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶}) → 𝐴 ⊆ {𝐵, 𝐶}) |
13 | 7, 12 | jaoi 716 | 1 ⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 = wceq 1353 ⊆ wss 3130 ∅c0 3423 {csn 3593 {cpr 3594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pr 3600 |
This theorem is referenced by: sstpr 3758 pwprss 3806 |
Copyright terms: Public domain | W3C validator |