ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssprr GIF version

Theorem ssprr 3736
Description: The subsets of a pair. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
ssprr (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶})

Proof of Theorem ssprr
StepHypRef Expression
1 0ss 3447 . . . 4 ∅ ⊆ {𝐵, 𝐶}
2 sseq1 3165 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ {𝐵, 𝐶} ↔ ∅ ⊆ {𝐵, 𝐶}))
31, 2mpbiri 167 . . 3 (𝐴 = ∅ → 𝐴 ⊆ {𝐵, 𝐶})
4 snsspr1 3721 . . . 4 {𝐵} ⊆ {𝐵, 𝐶}
5 sseq1 3165 . . . 4 (𝐴 = {𝐵} → (𝐴 ⊆ {𝐵, 𝐶} ↔ {𝐵} ⊆ {𝐵, 𝐶}))
64, 5mpbiri 167 . . 3 (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵, 𝐶})
73, 6jaoi 706 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵, 𝐶})
8 snsspr2 3722 . . . 4 {𝐶} ⊆ {𝐵, 𝐶}
9 sseq1 3165 . . . 4 (𝐴 = {𝐶} → (𝐴 ⊆ {𝐵, 𝐶} ↔ {𝐶} ⊆ {𝐵, 𝐶}))
108, 9mpbiri 167 . . 3 (𝐴 = {𝐶} → 𝐴 ⊆ {𝐵, 𝐶})
11 eqimss 3196 . . 3 (𝐴 = {𝐵, 𝐶} → 𝐴 ⊆ {𝐵, 𝐶})
1210, 11jaoi 706 . 2 ((𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶}) → 𝐴 ⊆ {𝐵, 𝐶})
137, 12jaoi 706 1 (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698   = wceq 1343  wss 3116  c0 3409  {csn 3576  {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pr 3583
This theorem is referenced by:  sstpr  3737  pwprss  3785
  Copyright terms: Public domain W3C validator