Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstpr GIF version

Theorem sstpr 3652
 Description: The subsets of a triple. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
sstpr ((((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})

Proof of Theorem sstpr
StepHypRef Expression
1 ssprr 3651 . . 3 (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶})
2 prsstp12 3641 . . 3 {𝐵, 𝐶} ⊆ {𝐵, 𝐶, 𝐷}
31, 2syl6ss 3077 . 2 (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
4 snsstp3 3640 . . . . 5 {𝐷} ⊆ {𝐵, 𝐶, 𝐷}
5 sseq1 3088 . . . . 5 (𝐴 = {𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
64, 5mpbiri 167 . . . 4 (𝐴 = {𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
7 prsstp13 3642 . . . . 5 {𝐵, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}
8 sseq1 3088 . . . . 5 (𝐴 = {𝐵, 𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐵, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
97, 8mpbiri 167 . . . 4 (𝐴 = {𝐵, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
106, 9jaoi 688 . . 3 ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
11 prsstp23 3643 . . . . 5 {𝐶, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}
12 sseq1 3088 . . . . 5 (𝐴 = {𝐶, 𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐶, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
1311, 12mpbiri 167 . . . 4 (𝐴 = {𝐶, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
14 eqimss 3119 . . . 4 (𝐴 = {𝐵, 𝐶, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
1513, 14jaoi 688 . . 3 ((𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
1610, 15jaoi 688 . 2 (((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
173, 16jaoi 688 1 ((((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
 Colors of variables: wff set class Syntax hints:   → wi 4   ∨ wo 680   = wceq 1314   ⊆ wss 3039  ∅c0 3331  {csn 3495  {cpr 3496  {ctp 3497 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-3or 946  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-sn 3501  df-pr 3502  df-tp 3503 This theorem is referenced by:  pwtpss  3701
 Copyright terms: Public domain W3C validator