ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstpr GIF version

Theorem sstpr 3692
Description: The subsets of a triple. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
sstpr ((((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})

Proof of Theorem sstpr
StepHypRef Expression
1 ssprr 3691 . . 3 (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶})
2 prsstp12 3681 . . 3 {𝐵, 𝐶} ⊆ {𝐵, 𝐶, 𝐷}
31, 2sstrdi 3114 . 2 (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
4 snsstp3 3680 . . . . 5 {𝐷} ⊆ {𝐵, 𝐶, 𝐷}
5 sseq1 3125 . . . . 5 (𝐴 = {𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
64, 5mpbiri 167 . . . 4 (𝐴 = {𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
7 prsstp13 3682 . . . . 5 {𝐵, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}
8 sseq1 3125 . . . . 5 (𝐴 = {𝐵, 𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐵, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
97, 8mpbiri 167 . . . 4 (𝐴 = {𝐵, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
106, 9jaoi 706 . . 3 ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
11 prsstp23 3683 . . . . 5 {𝐶, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}
12 sseq1 3125 . . . . 5 (𝐴 = {𝐶, 𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐶, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
1311, 12mpbiri 167 . . . 4 (𝐴 = {𝐶, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
14 eqimss 3156 . . . 4 (𝐴 = {𝐵, 𝐶, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
1513, 14jaoi 706 . . 3 ((𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
1610, 15jaoi 706 . 2 (((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
173, 16jaoi 706 1 ((((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698   = wceq 1332  wss 3076  c0 3368  {csn 3532  {cpr 3533  {ctp 3534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-3or 964  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-sn 3538  df-pr 3539  df-tp 3540
This theorem is referenced by:  pwtpss  3741
  Copyright terms: Public domain W3C validator