ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstpr GIF version

Theorem sstpr 3798
Description: The subsets of a triple. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
sstpr ((((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})

Proof of Theorem sstpr
StepHypRef Expression
1 ssprr 3797 . . 3 (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶})
2 prsstp12 3786 . . 3 {𝐵, 𝐶} ⊆ {𝐵, 𝐶, 𝐷}
31, 2sstrdi 3205 . 2 (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
4 snsstp3 3785 . . . . 5 {𝐷} ⊆ {𝐵, 𝐶, 𝐷}
5 sseq1 3216 . . . . 5 (𝐴 = {𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
64, 5mpbiri 168 . . . 4 (𝐴 = {𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
7 prsstp13 3787 . . . . 5 {𝐵, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}
8 sseq1 3216 . . . . 5 (𝐴 = {𝐵, 𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐵, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
97, 8mpbiri 168 . . . 4 (𝐴 = {𝐵, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
106, 9jaoi 718 . . 3 ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
11 prsstp23 3788 . . . . 5 {𝐶, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}
12 sseq1 3216 . . . . 5 (𝐴 = {𝐶, 𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐶, 𝐷} ⊆ {𝐵, 𝐶, 𝐷}))
1311, 12mpbiri 168 . . . 4 (𝐴 = {𝐶, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
14 eqimss 3247 . . . 4 (𝐴 = {𝐵, 𝐶, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
1513, 14jaoi 718 . . 3 ((𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
1610, 15jaoi 718 . 2 (((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
173, 16jaoi 718 1 ((((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  wss 3166  c0 3460  {csn 3633  {cpr 3634  {ctp 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3or 982  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-pr 3640  df-tp 3641
This theorem is referenced by:  pwtpss  3847
  Copyright terms: Public domain W3C validator