Proof of Theorem sstpr
| Step | Hyp | Ref
| Expression |
| 1 | | ssprr 3786 |
. . 3
⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶}) |
| 2 | | prsstp12 3775 |
. . 3
⊢ {𝐵, 𝐶} ⊆ {𝐵, 𝐶, 𝐷} |
| 3 | 1, 2 | sstrdi 3195 |
. 2
⊢ (((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷}) |
| 4 | | snsstp3 3774 |
. . . . 5
⊢ {𝐷} ⊆ {𝐵, 𝐶, 𝐷} |
| 5 | | sseq1 3206 |
. . . . 5
⊢ (𝐴 = {𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐷} ⊆ {𝐵, 𝐶, 𝐷})) |
| 6 | 4, 5 | mpbiri 168 |
. . . 4
⊢ (𝐴 = {𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷}) |
| 7 | | prsstp13 3776 |
. . . . 5
⊢ {𝐵, 𝐷} ⊆ {𝐵, 𝐶, 𝐷} |
| 8 | | sseq1 3206 |
. . . . 5
⊢ (𝐴 = {𝐵, 𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐵, 𝐷} ⊆ {𝐵, 𝐶, 𝐷})) |
| 9 | 7, 8 | mpbiri 168 |
. . . 4
⊢ (𝐴 = {𝐵, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷}) |
| 10 | 6, 9 | jaoi 717 |
. . 3
⊢ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷}) |
| 11 | | prsstp23 3777 |
. . . . 5
⊢ {𝐶, 𝐷} ⊆ {𝐵, 𝐶, 𝐷} |
| 12 | | sseq1 3206 |
. . . . 5
⊢ (𝐴 = {𝐶, 𝐷} → (𝐴 ⊆ {𝐵, 𝐶, 𝐷} ↔ {𝐶, 𝐷} ⊆ {𝐵, 𝐶, 𝐷})) |
| 13 | 11, 12 | mpbiri 168 |
. . . 4
⊢ (𝐴 = {𝐶, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷}) |
| 14 | | eqimss 3237 |
. . . 4
⊢ (𝐴 = {𝐵, 𝐶, 𝐷} → 𝐴 ⊆ {𝐵, 𝐶, 𝐷}) |
| 15 | 13, 14 | jaoi 717 |
. . 3
⊢ ((𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷}) |
| 16 | 10, 15 | jaoi 717 |
. 2
⊢ (((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷})) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷}) |
| 17 | 3, 16 | jaoi 717 |
1
⊢ ((((𝐴 = ∅ ∨ 𝐴 = {𝐵}) ∨ (𝐴 = {𝐶} ∨ 𝐴 = {𝐵, 𝐶})) ∨ ((𝐴 = {𝐷} ∨ 𝐴 = {𝐵, 𝐷}) ∨ (𝐴 = {𝐶, 𝐷} ∨ 𝐴 = {𝐵, 𝐶, 𝐷}))) → 𝐴 ⊆ {𝐵, 𝐶, 𝐷}) |