ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpss Unicode version

Theorem tpss 3738
Description: A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
tpss.1  |-  A  e. 
_V
tpss.2  |-  B  e. 
_V
tpss.3  |-  C  e. 
_V
Assertion
Ref Expression
tpss  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  { A ,  B ,  C }  C_  D )

Proof of Theorem tpss
StepHypRef Expression
1 unss 3296 . 2  |-  ( ( { A ,  B }  C_  D  /\  { C }  C_  D )  <-> 
( { A ,  B }  u.  { C } )  C_  D
)
2 df-3an 970 . . 3  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  ( ( A  e.  D  /\  B  e.  D
)  /\  C  e.  D ) )
3 tpss.1 . . . . 5  |-  A  e. 
_V
4 tpss.2 . . . . 5  |-  B  e. 
_V
53, 4prss 3729 . . . 4  |-  ( ( A  e.  D  /\  B  e.  D )  <->  { A ,  B }  C_  D )
6 tpss.3 . . . . 5  |-  C  e. 
_V
76snss 3702 . . . 4  |-  ( C  e.  D  <->  { C }  C_  D )
85, 7anbi12i 456 . . 3  |-  ( ( ( A  e.  D  /\  B  e.  D
)  /\  C  e.  D )  <->  ( { A ,  B }  C_  D  /\  { C }  C_  D ) )
92, 8bitri 183 . 2  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  ( { A ,  B }  C_  D  /\  { C }  C_  D ) )
10 df-tp 3584 . . 3  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
1110sseq1i 3168 . 2  |-  ( { A ,  B ,  C }  C_  D  <->  ( { A ,  B }  u.  { C } ) 
C_  D )
121, 9, 113bitr4i 211 1  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  { A ,  B ,  C }  C_  D )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   _Vcvv 2726    u. cun 3114    C_ wss 3116   {csn 3576   {cpr 3577   {ctp 3578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-tp 3584
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator