ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpss Unicode version

Theorem tpss 3835
Description: A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
tpss.1  |-  A  e. 
_V
tpss.2  |-  B  e. 
_V
tpss.3  |-  C  e. 
_V
Assertion
Ref Expression
tpss  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  { A ,  B ,  C }  C_  D )

Proof of Theorem tpss
StepHypRef Expression
1 unss 3378 . 2  |-  ( ( { A ,  B }  C_  D  /\  { C }  C_  D )  <-> 
( { A ,  B }  u.  { C } )  C_  D
)
2 df-3an 1004 . . 3  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  ( ( A  e.  D  /\  B  e.  D
)  /\  C  e.  D ) )
3 tpss.1 . . . . 5  |-  A  e. 
_V
4 tpss.2 . . . . 5  |-  B  e. 
_V
53, 4prss 3823 . . . 4  |-  ( ( A  e.  D  /\  B  e.  D )  <->  { A ,  B }  C_  D )
6 tpss.3 . . . . 5  |-  C  e. 
_V
76snss 3802 . . . 4  |-  ( C  e.  D  <->  { C }  C_  D )
85, 7anbi12i 460 . . 3  |-  ( ( ( A  e.  D  /\  B  e.  D
)  /\  C  e.  D )  <->  ( { A ,  B }  C_  D  /\  { C }  C_  D ) )
92, 8bitri 184 . 2  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  ( { A ,  B }  C_  D  /\  { C }  C_  D ) )
10 df-tp 3674 . . 3  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
1110sseq1i 3250 . 2  |-  ( { A ,  B ,  C }  C_  D  <->  ( { A ,  B }  u.  { C } ) 
C_  D )
121, 9, 113bitr4i 212 1  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  { A ,  B ,  C }  C_  D )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   _Vcvv 2799    u. cun 3195    C_ wss 3197   {csn 3666   {cpr 3667   {ctp 3668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-tp 3674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator