ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucprc GIF version

Theorem sucprc 4447
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc 𝐴 ∈ V → suc 𝐴 = 𝐴)

Proof of Theorem sucprc
StepHypRef Expression
1 df-suc 4406 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
2 snprc 3687 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
3 uneq2 3311 . . . 4 ({𝐴} = ∅ → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
42, 3sylbi 121 . . 3 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
51, 4eqtrid 2241 . 2 𝐴 ∈ V → suc 𝐴 = (𝐴 ∪ ∅))
6 un0 3484 . 2 (𝐴 ∪ ∅) = 𝐴
75, 6eqtrdi 2245 1 𝐴 ∈ V → suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  c0 3450  {csn 3622  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-suc 4406
This theorem is referenced by:  sucprcreg  4585  sucon  4589
  Copyright terms: Public domain W3C validator