Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucprc | GIF version |
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
sucprc | ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4326 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | snprc 3620 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
3 | uneq2 3251 | . . . 4 ⊢ ({𝐴} = ∅ → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) | |
4 | 2, 3 | sylbi 120 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) |
5 | 1, 4 | syl5eq 2199 | . 2 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = (𝐴 ∪ ∅)) |
6 | un0 3423 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
7 | 5, 6 | eqtrdi 2203 | 1 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1332 ∈ wcel 2125 Vcvv 2709 ∪ cun 3096 ∅c0 3390 {csn 3556 suc csuc 4320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-dif 3100 df-un 3102 df-nul 3391 df-sn 3562 df-suc 4326 |
This theorem is referenced by: sucprcreg 4502 sucon 4506 |
Copyright terms: Public domain | W3C validator |