ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucprc GIF version

Theorem sucprc 4502
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc 𝐴 ∈ V → suc 𝐴 = 𝐴)

Proof of Theorem sucprc
StepHypRef Expression
1 df-suc 4461 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
2 snprc 3731 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
3 uneq2 3352 . . . 4 ({𝐴} = ∅ → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
42, 3sylbi 121 . . 3 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
51, 4eqtrid 2274 . 2 𝐴 ∈ V → suc 𝐴 = (𝐴 ∪ ∅))
6 un0 3525 . 2 (𝐴 ∪ ∅) = 𝐴
75, 6eqtrdi 2278 1 𝐴 ∈ V → suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cun 3195  c0 3491  {csn 3666  suc csuc 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-suc 4461
This theorem is referenced by:  sucprcreg  4640  sucon  4644
  Copyright terms: Public domain W3C validator