![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucprc | GIF version |
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
sucprc | ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4402 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | snprc 3683 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
3 | uneq2 3307 | . . . 4 ⊢ ({𝐴} = ∅ → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) | |
4 | 2, 3 | sylbi 121 | . . 3 ⊢ (¬ 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅)) |
5 | 1, 4 | eqtrid 2238 | . 2 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = (𝐴 ∪ ∅)) |
6 | un0 3480 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
7 | 5, 6 | eqtrdi 2242 | 1 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∪ cun 3151 ∅c0 3446 {csn 3618 suc csuc 4396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-un 3157 df-nul 3447 df-sn 3624 df-suc 4402 |
This theorem is referenced by: sucprcreg 4581 sucon 4585 |
Copyright terms: Public domain | W3C validator |