ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucprc GIF version

Theorem sucprc 4414
Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995.)
Assertion
Ref Expression
sucprc 𝐴 ∈ V → suc 𝐴 = 𝐴)

Proof of Theorem sucprc
StepHypRef Expression
1 df-suc 4373 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
2 snprc 3659 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
3 uneq2 3285 . . . 4 ({𝐴} = ∅ → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
42, 3sylbi 121 . . 3 𝐴 ∈ V → (𝐴 ∪ {𝐴}) = (𝐴 ∪ ∅))
51, 4eqtrid 2222 . 2 𝐴 ∈ V → suc 𝐴 = (𝐴 ∪ ∅))
6 un0 3458 . 2 (𝐴 ∪ ∅) = 𝐴
75, 6eqtrdi 2226 1 𝐴 ∈ V → suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1353  wcel 2148  Vcvv 2739  cun 3129  c0 3424  {csn 3594  suc csuc 4367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-sn 3600  df-suc 4373
This theorem is referenced by:  sucprcreg  4550  sucon  4554
  Copyright terms: Public domain W3C validator