ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc0 Unicode version

Theorem suc0 4447
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0  |-  suc  (/)  =  { (/)
}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 4407 . 2  |-  suc  (/)  =  (
(/)  u.  { (/) } )
2 uncom 3308 . 2  |-  ( (/)  u. 
{ (/) } )  =  ( { (/) }  u.  (/) )
3 un0 3485 . 2  |-  ( {
(/) }  u.  (/) )  =  { (/) }
41, 2, 33eqtri 2221 1  |-  suc  (/)  =  { (/)
}
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3155   (/)c0 3451   {csn 3623   suc csuc 4401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3452  df-suc 4407
This theorem is referenced by:  ordtriexmidlem  4556  ordtri2orexmid  4560  2ordpr  4561  onsucsssucexmid  4564  onsucelsucexmid  4567  ordsoexmid  4599  ordtri2or2exmid  4608  ontri2orexmidim  4609  nnregexmid  4658  omsinds  4659  tfr0dm  6389  df1o2  6496  nninfsellemdc  15741
  Copyright terms: Public domain W3C validator