| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suc0 | Unicode version | ||
| Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| suc0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 4419 |
. 2
| |
| 2 | uncom 3317 |
. 2
| |
| 3 | un0 3494 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtri 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-un 3170 df-nul 3461 df-suc 4419 |
| This theorem is referenced by: ordtriexmidlem 4568 ordtri2orexmid 4572 2ordpr 4573 onsucsssucexmid 4576 onsucelsucexmid 4579 ordsoexmid 4611 ordtri2or2exmid 4620 ontri2orexmidim 4621 nnregexmid 4670 omsinds 4671 tfr0dm 6410 df1o2 6517 nninfsellemdc 15984 |
| Copyright terms: Public domain | W3C validator |