ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc0 Unicode version

Theorem suc0 4476
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0  |-  suc  (/)  =  { (/)
}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 4436 . 2  |-  suc  (/)  =  (
(/)  u.  { (/) } )
2 uncom 3325 . 2  |-  ( (/)  u. 
{ (/) } )  =  ( { (/) }  u.  (/) )
3 un0 3502 . 2  |-  ( {
(/) }  u.  (/) )  =  { (/) }
41, 2, 33eqtri 2232 1  |-  suc  (/)  =  { (/)
}
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3172   (/)c0 3468   {csn 3643   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-un 3178  df-nul 3469  df-suc 4436
This theorem is referenced by:  ordtriexmidlem  4585  ordtri2orexmid  4589  2ordpr  4590  onsucsssucexmid  4593  onsucelsucexmid  4596  ordsoexmid  4628  ordtri2or2exmid  4637  ontri2orexmidim  4638  nnregexmid  4687  omsinds  4688  tfr0dm  6431  df1o2  6538  nninfsellemdc  16149
  Copyright terms: Public domain W3C validator