ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc0 Unicode version

Theorem suc0 4502
Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
suc0  |-  suc  (/)  =  { (/)
}

Proof of Theorem suc0
StepHypRef Expression
1 df-suc 4462 . 2  |-  suc  (/)  =  (
(/)  u.  { (/) } )
2 uncom 3348 . 2  |-  ( (/)  u. 
{ (/) } )  =  ( { (/) }  u.  (/) )
3 un0 3525 . 2  |-  ( {
(/) }  u.  (/) )  =  { (/) }
41, 2, 33eqtri 2254 1  |-  suc  (/)  =  { (/)
}
Colors of variables: wff set class
Syntax hints:    = wceq 1395    u. cun 3195   (/)c0 3491   {csn 3666   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-suc 4462
This theorem is referenced by:  ordtriexmidlem  4611  ordtri2orexmid  4615  2ordpr  4616  onsucsssucexmid  4619  onsucelsucexmid  4622  ordsoexmid  4654  ordtri2or2exmid  4663  ontri2orexmidim  4664  nnregexmid  4713  omsinds  4714  tfr0dm  6468  df1o2  6575  nninfsellemdc  16376
  Copyright terms: Public domain W3C validator