ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem5 Unicode version

Theorem prarloclem5 7648
Description: A substitution of zero for  y and  N minus two for  x. Lemma for prarloc 7651. (Contributed by Jim Kingdon, 4-Nov-2019.)
Assertion
Ref Expression
prarloclem5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Distinct variable groups:    x, A, y   
x, L, y    x, N    x, P, y    x, U, y
Allowed substitution hint:    N( y)

Proof of Theorem prarloclem5
StepHypRef Expression
1 prarloclemn 7647 . . . 4  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x
)  =  N )
213adant2 1019 . . 3  |-  ( ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x )  =  N )
323ad2ant2 1022 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  ( 2o  +o  x )  =  N )
4 elprnql 7629 . . . . . . 7  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  L )  ->  A  e.  Q. )
543ad2ant1 1021 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  e.  Q. )
6 simp22 1034 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  P  e.  Q. )
7 nqnq0 7589 . . . . . . . . 9  |-  Q.  C_ Q0
87sseli 3197 . . . . . . . 8  |-  ( A  e.  Q.  ->  A  e. Q0 )
9 nq0a0 7605 . . . . . . . 8  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )
108, 9syl 14 . . . . . . 7  |-  ( A  e.  Q.  ->  ( A +Q0 0Q0 )  =  A )
117sseli 3197 . . . . . . . . . 10  |-  ( P  e.  Q.  ->  P  e. Q0 )
12 nq0m0r 7604 . . . . . . . . . 10  |-  ( P  e. Q0  ->  (0Q0 ·Q0  P )  = 0Q0 )
1311, 12syl 14 . . . . . . . . 9  |-  ( P  e.  Q.  ->  (0Q0 ·Q0 
P )  = 0Q0 )
14 df-0nq0 7574 . . . . . . . . . 10  |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
1514oveq1i 5977 . . . . . . . . 9  |-  (0Q0 ·Q0 
P )  =  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P )
1613, 15eqtr3di 2255 . . . . . . . 8  |-  ( P  e.  Q.  -> 0Q0  =  ( [ <. (/)
,  1o >. ] ~Q0 ·Q0  P ) )
1716oveq2d 5983 . . . . . . 7  |-  ( P  e.  Q.  ->  ( A +Q0 0Q0 )  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
1810, 17sylan9req 2261 . . . . . 6  |-  ( ( A  e.  Q.  /\  P  e.  Q. )  ->  A  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
195, 6, 18syl2anc 411 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
) )
20 simp1r 1025 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  e.  L )
2119, 20eqeltrrd 2285 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L )
22 2onn 6630 . . . . . . . . . . . . . . 15  |-  2o  e.  om
23 nna0r 6587 . . . . . . . . . . . . . . 15  |-  ( 2o  e.  om  ->  ( (/) 
+o  2o )  =  2o )
2422, 23ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (/)  +o  2o )  =  2o
2524oveq1i 5977 . . . . . . . . . . . . 13  |-  ( (
(/)  +o  2o )  +o  x )  =  ( 2o  +o  x )
2625eqeq1i 2215 . . . . . . . . . . . 12  |-  ( ( ( (/)  +o  2o )  +o  x )  =  N  <->  ( 2o  +o  x )  =  N )
2726biimpri 133 . . . . . . . . . . 11  |-  ( ( 2o  +o  x )  =  N  ->  (
( (/)  +o  2o )  +o  x )  =  N )
2827opeq1d 3839 . . . . . . . . . 10  |-  ( ( 2o  +o  x )  =  N  ->  <. (
( (/)  +o  2o )  +o  x ) ,  1o >.  =  <. N ,  1o >. )
2928eceq1d 6679 . . . . . . . . 9  |-  ( ( 2o  +o  x )  =  N  ->  [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. N ,  1o >. ]  ~Q  )
3029oveq1d 5982 . . . . . . . 8  |-  ( ( 2o  +o  x )  =  N  ->  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )
3130oveq2d 5983 . . . . . . 7  |-  ( ( 2o  +o  x )  =  N  ->  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P
) ) )
3231eleq1d 2276 . . . . . 6  |-  ( ( 2o  +o  x )  =  N  ->  (
( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
3332biimprcd 160 . . . . 5  |-  ( ( A  +Q  ( [
<. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U  -> 
( ( 2o  +o  x )  =  N  ->  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
34333ad2ant3 1023 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  (
( 2o  +o  x
)  =  N  -> 
( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
35 peano1 4660 . . . . 5  |-  (/)  e.  om
36 opeq1 3833 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  <. y ,  1o >.  =  <. (/)
,  1o >. )
3736eceq1d 6679 . . . . . . . . . 10  |-  ( y  =  (/)  ->  [ <. y ,  1o >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  )
3837oveq1d 5982 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( [
<. y ,  1o >. ] ~Q0 ·Q0 
P )  =  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )
3938oveq2d 5983 . . . . . . . 8  |-  ( y  =  (/)  ->  ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
4039eleq1d 2276 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  <->  ( A +Q0  ( [
<. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L ) )
41 oveq1 5974 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  ( y  +o  2o )  =  ( (/)  +o  2o ) )
4241oveq1d 5982 . . . . . . . . . . . 12  |-  ( y  =  (/)  ->  ( ( y  +o  2o )  +o  x )  =  ( ( (/)  +o  2o )  +o  x ) )
4342opeq1d 3839 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. )
4443eceq1d 6679 . . . . . . . . . 10  |-  ( y  =  (/)  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  )
4544oveq1d 5982 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )
4645oveq2d 5983 . . . . . . . 8  |-  ( y  =  (/)  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) ) )
4746eleq1d 2276 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. (
( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
4840, 47anbi12d 473 . . . . . 6  |-  ( y  =  (/)  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
4948rspcev 2884 . . . . 5  |-  ( (
(/)  e.  om  /\  (
( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
5035, 49mpan 424 . . . 4  |-  ( ( ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
5121, 34, 50syl6an 1454 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  (
( 2o  +o  x
)  =  N  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
5251reximdv 2609 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  ( E. x  e.  om  ( 2o  +o  x
)  =  N  ->  E. x  e.  om  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
533, 52mpd 13 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487   (/)c0 3468   <.cop 3646   class class class wbr 4059   omcom 4656  (class class class)co 5967   1oc1o 6518   2oc2o 6519    +o coa 6522   [cec 6641   N.cnpi 7420    <N clti 7423    ~Q ceq 7427   Q.cnq 7428    +Q cplq 7430    .Q cmq 7431   ~Q0 ceq0 7434  Q0cnq0 7435  0Q0c0q0 7436   +Q0 cplq0 7437   ·Q0 cmq0 7438   P.cnp 7439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-mi 7454  df-lti 7455  df-enq 7495  df-nqqs 7496  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614
This theorem is referenced by:  prarloclem  7649
  Copyright terms: Public domain W3C validator