ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem5 Unicode version

Theorem prarloclem5 7560
Description: A substitution of zero for  y and  N minus two for  x. Lemma for prarloc 7563. (Contributed by Jim Kingdon, 4-Nov-2019.)
Assertion
Ref Expression
prarloclem5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Distinct variable groups:    x, A, y   
x, L, y    x, N    x, P, y    x, U, y
Allowed substitution hint:    N( y)

Proof of Theorem prarloclem5
StepHypRef Expression
1 prarloclemn 7559 . . . 4  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x
)  =  N )
213adant2 1018 . . 3  |-  ( ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x )  =  N )
323ad2ant2 1021 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  ( 2o  +o  x )  =  N )
4 elprnql 7541 . . . . . . 7  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  L )  ->  A  e.  Q. )
543ad2ant1 1020 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  e.  Q. )
6 simp22 1033 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  P  e.  Q. )
7 nqnq0 7501 . . . . . . . . 9  |-  Q.  C_ Q0
87sseli 3175 . . . . . . . 8  |-  ( A  e.  Q.  ->  A  e. Q0 )
9 nq0a0 7517 . . . . . . . 8  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )
108, 9syl 14 . . . . . . 7  |-  ( A  e.  Q.  ->  ( A +Q0 0Q0 )  =  A )
117sseli 3175 . . . . . . . . . 10  |-  ( P  e.  Q.  ->  P  e. Q0 )
12 nq0m0r 7516 . . . . . . . . . 10  |-  ( P  e. Q0  ->  (0Q0 ·Q0  P )  = 0Q0 )
1311, 12syl 14 . . . . . . . . 9  |-  ( P  e.  Q.  ->  (0Q0 ·Q0 
P )  = 0Q0 )
14 df-0nq0 7486 . . . . . . . . . 10  |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
1514oveq1i 5928 . . . . . . . . 9  |-  (0Q0 ·Q0 
P )  =  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P )
1613, 15eqtr3di 2241 . . . . . . . 8  |-  ( P  e.  Q.  -> 0Q0  =  ( [ <. (/)
,  1o >. ] ~Q0 ·Q0  P ) )
1716oveq2d 5934 . . . . . . 7  |-  ( P  e.  Q.  ->  ( A +Q0 0Q0 )  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
1810, 17sylan9req 2247 . . . . . 6  |-  ( ( A  e.  Q.  /\  P  e.  Q. )  ->  A  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
195, 6, 18syl2anc 411 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
) )
20 simp1r 1024 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  e.  L )
2119, 20eqeltrrd 2271 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L )
22 2onn 6574 . . . . . . . . . . . . . . 15  |-  2o  e.  om
23 nna0r 6531 . . . . . . . . . . . . . . 15  |-  ( 2o  e.  om  ->  ( (/) 
+o  2o )  =  2o )
2422, 23ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (/)  +o  2o )  =  2o
2524oveq1i 5928 . . . . . . . . . . . . 13  |-  ( (
(/)  +o  2o )  +o  x )  =  ( 2o  +o  x )
2625eqeq1i 2201 . . . . . . . . . . . 12  |-  ( ( ( (/)  +o  2o )  +o  x )  =  N  <->  ( 2o  +o  x )  =  N )
2726biimpri 133 . . . . . . . . . . 11  |-  ( ( 2o  +o  x )  =  N  ->  (
( (/)  +o  2o )  +o  x )  =  N )
2827opeq1d 3810 . . . . . . . . . 10  |-  ( ( 2o  +o  x )  =  N  ->  <. (
( (/)  +o  2o )  +o  x ) ,  1o >.  =  <. N ,  1o >. )
2928eceq1d 6623 . . . . . . . . 9  |-  ( ( 2o  +o  x )  =  N  ->  [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. N ,  1o >. ]  ~Q  )
3029oveq1d 5933 . . . . . . . 8  |-  ( ( 2o  +o  x )  =  N  ->  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )
3130oveq2d 5934 . . . . . . 7  |-  ( ( 2o  +o  x )  =  N  ->  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P
) ) )
3231eleq1d 2262 . . . . . 6  |-  ( ( 2o  +o  x )  =  N  ->  (
( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
3332biimprcd 160 . . . . 5  |-  ( ( A  +Q  ( [
<. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U  -> 
( ( 2o  +o  x )  =  N  ->  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
34333ad2ant3 1022 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  (
( 2o  +o  x
)  =  N  -> 
( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
35 peano1 4626 . . . . 5  |-  (/)  e.  om
36 opeq1 3804 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  <. y ,  1o >.  =  <. (/)
,  1o >. )
3736eceq1d 6623 . . . . . . . . . 10  |-  ( y  =  (/)  ->  [ <. y ,  1o >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  )
3837oveq1d 5933 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( [
<. y ,  1o >. ] ~Q0 ·Q0 
P )  =  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )
3938oveq2d 5934 . . . . . . . 8  |-  ( y  =  (/)  ->  ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
4039eleq1d 2262 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  <->  ( A +Q0  ( [
<. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L ) )
41 oveq1 5925 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  ( y  +o  2o )  =  ( (/)  +o  2o ) )
4241oveq1d 5933 . . . . . . . . . . . 12  |-  ( y  =  (/)  ->  ( ( y  +o  2o )  +o  x )  =  ( ( (/)  +o  2o )  +o  x ) )
4342opeq1d 3810 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. )
4443eceq1d 6623 . . . . . . . . . 10  |-  ( y  =  (/)  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  )
4544oveq1d 5933 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )
4645oveq2d 5934 . . . . . . . 8  |-  ( y  =  (/)  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) ) )
4746eleq1d 2262 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. (
( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
4840, 47anbi12d 473 . . . . . 6  |-  ( y  =  (/)  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
4948rspcev 2864 . . . . 5  |-  ( (
(/)  e.  om  /\  (
( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
5035, 49mpan 424 . . . 4  |-  ( ( ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
5121, 34, 50syl6an 1445 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  (
( 2o  +o  x
)  =  N  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
5251reximdv 2595 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  ( E. x  e.  om  ( 2o  +o  x
)  =  N  ->  E. x  e.  om  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
533, 52mpd 13 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473   (/)c0 3446   <.cop 3621   class class class wbr 4029   omcom 4622  (class class class)co 5918   1oc1o 6462   2oc2o 6463    +o coa 6466   [cec 6585   N.cnpi 7332    <N clti 7335    ~Q ceq 7339   Q.cnq 7340    +Q cplq 7342    .Q cmq 7343   ~Q0 ceq0 7346  Q0cnq0 7347  0Q0c0q0 7348   +Q0 cplq0 7349   ·Q0 cmq0 7350   P.cnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-mi 7366  df-lti 7367  df-enq 7407  df-nqqs 7408  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526
This theorem is referenced by:  prarloclem  7561
  Copyright terms: Public domain W3C validator