ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnm Unicode version

Theorem resqrexlemnm 11362
Description: Lemma for resqrex 11370. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemnmsq.n  |-  ( ph  ->  N  e.  NN )
resqrexlemnmsq.m  |-  ( ph  ->  M  e.  NN )
resqrexlemnmsq.nm  |-  ( ph  ->  N  <_  M )
Assertion
Ref Expression
resqrexlemnm  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <  ( (
( ( F ` 
1 ) ^ 2 )  x.  2 )  /  ( 2 ^ ( N  -  1 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z    y, M, z    y, N, z
Allowed substitution hints:    F( y, z)

Proof of Theorem resqrexlemnm
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 11351 . . . . . 6  |-  ( ph  ->  F : NN --> RR+ )
5 resqrexlemnmsq.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
64, 5ffvelcdmd 5718 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
76rpred 9820 . . . 4  |-  ( ph  ->  ( F `  N
)  e.  RR )
8 resqrexlemnmsq.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
94, 8ffvelcdmd 5718 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  RR+ )
109rpred 9820 . . . 4  |-  ( ph  ->  ( F `  M
)  e.  RR )
117, 10resubcld 8455 . . 3  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  e.  RR )
127resqcld 10846 . . . . 5  |-  ( ph  ->  ( ( F `  N ) ^ 2 )  e.  RR )
1310resqcld 10846 . . . . 5  |-  ( ph  ->  ( ( F `  M ) ^ 2 )  e.  RR )
1412, 13resubcld 8455 . . . 4  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  e.  RR )
15 2cn 9109 . . . . . . 7  |-  2  e.  CC
16 expm1t 10714 . . . . . . 7  |-  ( ( 2  e.  CC  /\  N  e.  NN )  ->  ( 2 ^ N
)  =  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) )
1715, 5, 16sylancr 414 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  =  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) )
18 2nn 9200 . . . . . . . . 9  |-  2  e.  NN
1918a1i 9 . . . . . . . 8  |-  ( ph  ->  2  e.  NN )
205nnnn0d 9350 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
2119, 20nnexpcld 10842 . . . . . . 7  |-  ( ph  ->  ( 2 ^ N
)  e.  NN )
2221nnrpd 9818 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  e.  RR+ )
2317, 22eqeltrrd 2283 . . . . 5  |-  ( ph  ->  ( ( 2 ^ ( N  -  1 ) )  x.  2 )  e.  RR+ )
2423rpred 9820 . . . 4  |-  ( ph  ->  ( ( 2 ^ ( N  -  1 ) )  x.  2 )  e.  RR )
2514, 24remulcld 8105 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR )
26 1nn 9049 . . . . . . . . 9  |-  1  e.  NN
2726a1i 9 . . . . . . . 8  |-  ( ph  ->  1  e.  NN )
284, 27ffvelcdmd 5718 . . . . . . 7  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
2919nnzd 9496 . . . . . . 7  |-  ( ph  ->  2  e.  ZZ )
3028, 29rpexpcld 10844 . . . . . 6  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
31 4re 9115 . . . . . . . . 9  |-  4  e.  RR
32 4pos 9135 . . . . . . . . 9  |-  0  <  4
3331, 32elrpii 9780 . . . . . . . 8  |-  4  e.  RR+
3433a1i 9 . . . . . . 7  |-  ( ph  ->  4  e.  RR+ )
355nnzd 9496 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
36 peano2zm 9412 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
3735, 36syl 14 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
3834, 37rpexpcld 10844 . . . . . 6  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) )  e.  RR+ )
3930, 38rpdivcld 9838 . . . . 5  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR+ )
4039rpred 9820 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR )
4140, 24remulcld 8105 . . 3  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR )
426, 9rpaddcld 9836 . . . . . . 7  |-  ( ph  ->  ( ( F `  N )  +  ( F `  M ) )  e.  RR+ )
4342, 23rpmulcld 9837 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 N )  +  ( F `  M
) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR+ )
4443rpred 9820 . . . . 5  |-  ( ph  ->  ( ( ( F `
 N )  +  ( F `  M
) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR )
452adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  A  e.  RR )
463adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  0  <_  A )
475adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  N  e.  NN )
488adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  M  e.  NN )
49 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
501, 45, 46, 47, 48, 49resqrexlemdecn 11356 . . . . . . . 8  |-  ( (
ph  /\  N  <  M )  ->  ( F `  M )  <  ( F `  N )
)
5110adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  ( F `  M )  e.  RR )
527adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  ( F `  N )  e.  RR )
53 difrp 9816 . . . . . . . . 9  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  N )  e.  RR )  -> 
( ( F `  M )  <  ( F `  N )  <->  ( ( F `  N
)  -  ( F `
 M ) )  e.  RR+ ) )
5451, 52, 53syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  N  <  M )  ->  ( ( F `  M )  <  ( F `  N
)  <->  ( ( F `
 N )  -  ( F `  M ) )  e.  RR+ )
)
5550, 54mpbid 147 . . . . . . 7  |-  ( (
ph  /\  N  <  M )  ->  ( ( F `  N )  -  ( F `  M ) )  e.  RR+ )
5655rpge0d 9824 . . . . . 6  |-  ( (
ph  /\  N  <  M )  ->  0  <_  ( ( F `  N
)  -  ( F `
 M ) ) )
577recnd 8103 . . . . . . . . 9  |-  ( ph  ->  ( F `  N
)  e.  CC )
5857subidd 8373 . . . . . . . 8  |-  ( ph  ->  ( ( F `  N )  -  ( F `  N )
)  =  0 )
59 fveq2 5578 . . . . . . . . 9  |-  ( N  =  M  ->  ( F `  N )  =  ( F `  M ) )
6059oveq2d 5962 . . . . . . . 8  |-  ( N  =  M  ->  (
( F `  N
)  -  ( F `
 N ) )  =  ( ( F `
 N )  -  ( F `  M ) ) )
6158, 60sylan9req 2259 . . . . . . 7  |-  ( (
ph  /\  N  =  M )  ->  0  =  ( ( F `
 N )  -  ( F `  M ) ) )
62 0re 8074 . . . . . . . 8  |-  0  e.  RR
6362eqlei 8168 . . . . . . 7  |-  ( 0  =  ( ( F `
 N )  -  ( F `  M ) )  ->  0  <_  ( ( F `  N
)  -  ( F `
 M ) ) )
6461, 63syl 14 . . . . . 6  |-  ( (
ph  /\  N  =  M )  ->  0  <_  ( ( F `  N )  -  ( F `  M )
) )
65 resqrexlemnmsq.nm . . . . . . 7  |-  ( ph  ->  N  <_  M )
668nnzd 9496 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
67 zleloe 9421 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  <_  M  <->  ( N  <  M  \/  N  =  M )
) )
6835, 66, 67syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( N  <_  M  <->  ( N  <  M  \/  N  =  M )
) )
6965, 68mpbid 147 . . . . . 6  |-  ( ph  ->  ( N  <  M  \/  N  =  M
) )
7056, 64, 69mpjaodan 800 . . . . 5  |-  ( ph  ->  0  <_  ( ( F `  N )  -  ( F `  M ) ) )
71 1red 8089 . . . . . 6  |-  ( ph  ->  1  e.  RR )
7221nnrecred 9085 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  e.  RR )
7372recnd 8103 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  e.  CC )
7473addridd 8223 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
( 2 ^ N
) )  +  0 )  =  ( 1  /  ( 2 ^ N ) ) )
75 0red 8075 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
761, 2, 3resqrexlemlo 11357 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) )
775, 76mpdan 421 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  <  ( F `
 N ) )
789rpgt0d 9823 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( F `
 M ) )
7972, 75, 7, 10, 77, 78lt2addd 8642 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
( 2 ^ N
) )  +  0 )  <  ( ( F `  N )  +  ( F `  M ) ) )
8074, 79eqbrtrrd 4069 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  <  ( ( F `  N )  +  ( F `  M ) ) )
817, 10readdcld 8104 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  N )  +  ( F `  M ) )  e.  RR )
8271, 81, 22ltdivmul2d 9873 . . . . . . . 8  |-  ( ph  ->  ( ( 1  / 
( 2 ^ N
) )  <  (
( F `  N
)  +  ( F `
 M ) )  <->  1  <  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( 2 ^ N ) ) ) )
8380, 82mpbid 147 . . . . . . 7  |-  ( ph  ->  1  <  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( 2 ^ N ) ) )
8417oveq2d 5962 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 N )  +  ( F `  M
) )  x.  (
2 ^ N ) )  =  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
8583, 84breqtrd 4071 . . . . . 6  |-  ( ph  ->  1  <  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
8671, 44, 85ltled 8193 . . . . 5  |-  ( ph  ->  1  <_  ( (
( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
8711, 44, 70, 86lemulge11d 9012 . . . 4  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <_  ( (
( F `  N
)  -  ( F `
 M ) )  x.  ( ( ( F `  N )  +  ( F `  M ) )  x.  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) ) ) )
8811recnd 8103 . . . . . 6  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  e.  CC )
8981recnd 8103 . . . . . 6  |-  ( ph  ->  ( ( F `  N )  +  ( F `  M ) )  e.  CC )
9023rpcnd 9822 . . . . . 6  |-  ( ph  ->  ( ( 2 ^ ( N  -  1 ) )  x.  2 )  e.  CC )
9188, 89, 90mulassd 8098 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( F `  N
)  -  ( F `
 M ) )  x.  ( ( ( F `  N )  +  ( F `  M ) )  x.  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) ) ) )
9288, 89mulcomd 8096 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  =  ( ( ( F `  N )  +  ( F `  M ) )  x.  ( ( F `  N )  -  ( F `  M )
) ) )
9310recnd 8103 . . . . . . . 8  |-  ( ph  ->  ( F `  M
)  e.  CC )
94 subsq 10793 . . . . . . . 8  |-  ( ( ( F `  N
)  e.  CC  /\  ( F `  M )  e.  CC )  -> 
( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  =  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( F `
 N )  -  ( F `  M ) ) ) )
9557, 93, 94syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  =  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( F `
 N )  -  ( F `  M ) ) ) )
9692, 95eqtr4d 2241 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  =  ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) ) )
9796oveq1d 5961 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
9891, 97eqtr3d 2240 . . . 4  |-  ( ph  ->  ( ( ( F `
 N )  -  ( F `  M ) )  x.  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )  =  ( ( ( ( F `  N
) ^ 2 )  -  ( ( F `
 M ) ^
2 ) )  x.  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) ) )
9987, 98breqtrd 4071 . . 3  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <_  ( (
( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
1001, 2, 3, 5, 8, 65resqrexlemnmsq 11361 . . . 4  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
10114, 40, 23, 100ltmul1dd 9876 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  <  ( ( ( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( N  - 
1 ) ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
10211, 25, 41, 99, 101lelttrd 8199 . 2  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <  ( (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( N  - 
1 ) ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
10340recnd 8103 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  CC )
10419nnrpd 9818 . . . . . . . 8  |-  ( ph  ->  2  e.  RR+ )
105104, 37rpexpcld 10844 . . . . . . 7  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) )  e.  RR+ )
106105rpcnd 9822 . . . . . 6  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) )  e.  CC )
107 2cnd 9111 . . . . . 6  |-  ( ph  ->  2  e.  CC )
108103, 106, 107mulassd 8098 . . . . 5  |-  ( ph  ->  ( ( ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) )  x.  ( 2 ^ ( N  -  1 ) ) )  x.  2 )  =  ( ( ( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( N  - 
1 ) ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
10930rpcnd 9822 . . . . . . . 8  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  CC )
11038rpcnd 9822 . . . . . . . 8  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) )  e.  CC )
11138rpap0d 9826 . . . . . . . 8  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) ) #  0 )
112109, 110, 106, 111div32apd 8889 . . . . . . 7  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
2 ^ ( N  -  1 ) ) )  =  ( ( ( F `  1
) ^ 2 )  x.  ( ( 2 ^ ( N  - 
1 ) )  / 
( 4 ^ ( N  -  1 ) ) ) ) )
113 4d2e2 9199 . . . . . . . . . . . 12  |-  ( 4  /  2 )  =  2
114113oveq1i 5956 . . . . . . . . . . 11  |-  ( ( 4  /  2 ) ^ ( N  - 
1 ) )  =  ( 2 ^ ( N  -  1 ) )
11534rpcnd 9822 . . . . . . . . . . . 12  |-  ( ph  ->  4  e.  CC )
116104rpap0d 9826 . . . . . . . . . . . 12  |-  ( ph  ->  2 #  0 )
117 nnm1nn0 9338 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1185, 117syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
119115, 107, 116, 118expdivapd 10834 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 4  / 
2 ) ^ ( N  -  1 ) )  =  ( ( 4 ^ ( N  -  1 ) )  /  ( 2 ^ ( N  -  1 ) ) ) )
120114, 119eqtr3id 2252 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) )  =  ( ( 4 ^ ( N  -  1 ) )  /  ( 2 ^ ( N  -  1 ) ) ) )
121120oveq2d 5962 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  (
2 ^ ( N  -  1 ) ) )  =  ( 1  /  ( ( 4 ^ ( N  - 
1 ) )  / 
( 2 ^ ( N  -  1 ) ) ) ) )
122105rpap0d 9826 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) ) #  0 )
123110, 106, 111, 122recdivapd 8882 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  (
( 4 ^ ( N  -  1 ) )  /  ( 2 ^ ( N  - 
1 ) ) ) )  =  ( ( 2 ^ ( N  -  1 ) )  /  ( 4 ^ ( N  -  1 ) ) ) )
124121, 123eqtrd 2238 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
2 ^ ( N  -  1 ) ) )  =  ( ( 2 ^ ( N  -  1 ) )  /  ( 4 ^ ( N  -  1 ) ) ) )
125124oveq2d 5962 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  x.  (
1  /  ( 2 ^ ( N  - 
1 ) ) ) )  =  ( ( ( F `  1
) ^ 2 )  x.  ( ( 2 ^ ( N  - 
1 ) )  / 
( 4 ^ ( N  -  1 ) ) ) ) )
126112, 125eqtr4d 2241 . . . . . 6  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
2 ^ ( N  -  1 ) ) )  =  ( ( ( F `  1
) ^ 2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
127126oveq1d 5961 . . . . 5  |-  ( ph  ->  ( ( ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) )  x.  ( 2 ^ ( N  -  1 ) ) )  x.  2 )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  ( 1  /  ( 2 ^ ( N  -  1 ) ) ) )  x.  2 ) )
128108, 127eqtr3d 2240 . . . 4  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  ( 1  /  ( 2 ^ ( N  -  1 ) ) ) )  x.  2 ) )
129106, 122recclapd 8856 . . . . 5  |-  ( ph  ->  ( 1  /  (
2 ^ ( N  -  1 ) ) )  e.  CC )
130109, 129, 107mul32d 8227 . . . 4  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  x.  ( 1  /  (
2 ^ ( N  -  1 ) ) ) )  x.  2 )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
131128, 130eqtrd 2238 . . 3  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
132109, 107mulcld 8095 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  x.  2 )  e.  CC )
133132, 106, 122divrecapd 8868 . . 3  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( N  -  1 ) ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
134131, 133eqtr4d 2241 . 2  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  /  ( 2 ^ ( N  -  1 ) ) ) )
135102, 134breqtrd 4071 1  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <  ( (
( ( F ` 
1 ) ^ 2 )  x.  2 )  /  ( 2 ^ ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   {csn 3633   class class class wbr 4045    X. cxp 4674   ` cfv 5272  (class class class)co 5946    e. cmpo 5948   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    + caddc 7930    x. cmul 7932    < clt 8109    <_ cle 8110    - cmin 8245    / cdiv 8747   NNcn 9038   2c2 9089   4c4 9091   NN0cn0 9297   ZZcz 9374   RR+crp 9777    seqcseq 10594   ^cexp 10685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-rp 9778  df-seqfrec 10595  df-exp 10686
This theorem is referenced by:  resqrexlemcvg  11363
  Copyright terms: Public domain W3C validator