Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resqrexlemnm | Unicode version |
Description: Lemma for resqrex 10990. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.) |
Ref | Expression |
---|---|
resqrexlemex.seq | |
resqrexlemex.a | |
resqrexlemex.agt0 | |
resqrexlemnmsq.n | |
resqrexlemnmsq.m | |
resqrexlemnmsq.nm |
Ref | Expression |
---|---|
resqrexlemnm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrexlemex.seq | . . . . . . 7 | |
2 | resqrexlemex.a | . . . . . . 7 | |
3 | resqrexlemex.agt0 | . . . . . . 7 | |
4 | 1, 2, 3 | resqrexlemf 10971 | . . . . . 6 |
5 | resqrexlemnmsq.n | . . . . . 6 | |
6 | 4, 5 | ffvelrnd 5632 | . . . . 5 |
7 | 6 | rpred 9653 | . . . 4 |
8 | resqrexlemnmsq.m | . . . . . 6 | |
9 | 4, 8 | ffvelrnd 5632 | . . . . 5 |
10 | 9 | rpred 9653 | . . . 4 |
11 | 7, 10 | resubcld 8300 | . . 3 |
12 | 7 | resqcld 10635 | . . . . 5 |
13 | 10 | resqcld 10635 | . . . . 5 |
14 | 12, 13 | resubcld 8300 | . . . 4 |
15 | 2cn 8949 | . . . . . . 7 | |
16 | expm1t 10504 | . . . . . . 7 | |
17 | 15, 5, 16 | sylancr 412 | . . . . . 6 |
18 | 2nn 9039 | . . . . . . . . 9 | |
19 | 18 | a1i 9 | . . . . . . . 8 |
20 | 5 | nnnn0d 9188 | . . . . . . . 8 |
21 | 19, 20 | nnexpcld 10631 | . . . . . . 7 |
22 | 21 | nnrpd 9651 | . . . . . 6 |
23 | 17, 22 | eqeltrrd 2248 | . . . . 5 |
24 | 23 | rpred 9653 | . . . 4 |
25 | 14, 24 | remulcld 7950 | . . 3 |
26 | 1nn 8889 | . . . . . . . . 9 | |
27 | 26 | a1i 9 | . . . . . . . 8 |
28 | 4, 27 | ffvelrnd 5632 | . . . . . . 7 |
29 | 19 | nnzd 9333 | . . . . . . 7 |
30 | 28, 29 | rpexpcld 10633 | . . . . . 6 |
31 | 4re 8955 | . . . . . . . . 9 | |
32 | 4pos 8975 | . . . . . . . . 9 | |
33 | 31, 32 | elrpii 9613 | . . . . . . . 8 |
34 | 33 | a1i 9 | . . . . . . 7 |
35 | 5 | nnzd 9333 | . . . . . . . 8 |
36 | peano2zm 9250 | . . . . . . . 8 | |
37 | 35, 36 | syl 14 | . . . . . . 7 |
38 | 34, 37 | rpexpcld 10633 | . . . . . 6 |
39 | 30, 38 | rpdivcld 9671 | . . . . 5 |
40 | 39 | rpred 9653 | . . . 4 |
41 | 40, 24 | remulcld 7950 | . . 3 |
42 | 6, 9 | rpaddcld 9669 | . . . . . . 7 |
43 | 42, 23 | rpmulcld 9670 | . . . . . 6 |
44 | 43 | rpred 9653 | . . . . 5 |
45 | 2 | adantr 274 | . . . . . . . . 9 |
46 | 3 | adantr 274 | . . . . . . . . 9 |
47 | 5 | adantr 274 | . . . . . . . . 9 |
48 | 8 | adantr 274 | . . . . . . . . 9 |
49 | simpr 109 | . . . . . . . . 9 | |
50 | 1, 45, 46, 47, 48, 49 | resqrexlemdecn 10976 | . . . . . . . 8 |
51 | 10 | adantr 274 | . . . . . . . . 9 |
52 | 7 | adantr 274 | . . . . . . . . 9 |
53 | difrp 9649 | . . . . . . . . 9 | |
54 | 51, 52, 53 | syl2anc 409 | . . . . . . . 8 |
55 | 50, 54 | mpbid 146 | . . . . . . 7 |
56 | 55 | rpge0d 9657 | . . . . . 6 |
57 | 7 | recnd 7948 | . . . . . . . . 9 |
58 | 57 | subidd 8218 | . . . . . . . 8 |
59 | fveq2 5496 | . . . . . . . . 9 | |
60 | 59 | oveq2d 5869 | . . . . . . . 8 |
61 | 58, 60 | sylan9req 2224 | . . . . . . 7 |
62 | 0re 7920 | . . . . . . . 8 | |
63 | 62 | eqlei 8013 | . . . . . . 7 |
64 | 61, 63 | syl 14 | . . . . . 6 |
65 | resqrexlemnmsq.nm | . . . . . . 7 | |
66 | 8 | nnzd 9333 | . . . . . . . 8 |
67 | zleloe 9259 | . . . . . . . 8 | |
68 | 35, 66, 67 | syl2anc 409 | . . . . . . 7 |
69 | 65, 68 | mpbid 146 | . . . . . 6 |
70 | 56, 64, 69 | mpjaodan 793 | . . . . 5 |
71 | 1red 7935 | . . . . . 6 | |
72 | 21 | nnrecred 8925 | . . . . . . . . . . 11 |
73 | 72 | recnd 7948 | . . . . . . . . . 10 |
74 | 73 | addid1d 8068 | . . . . . . . . 9 |
75 | 0red 7921 | . . . . . . . . . 10 | |
76 | 1, 2, 3 | resqrexlemlo 10977 | . . . . . . . . . . 11 |
77 | 5, 76 | mpdan 419 | . . . . . . . . . 10 |
78 | 9 | rpgt0d 9656 | . . . . . . . . . 10 |
79 | 72, 75, 7, 10, 77, 78 | lt2addd 8486 | . . . . . . . . 9 |
80 | 74, 79 | eqbrtrrd 4013 | . . . . . . . 8 |
81 | 7, 10 | readdcld 7949 | . . . . . . . . 9 |
82 | 71, 81, 22 | ltdivmul2d 9706 | . . . . . . . 8 |
83 | 80, 82 | mpbid 146 | . . . . . . 7 |
84 | 17 | oveq2d 5869 | . . . . . . 7 |
85 | 83, 84 | breqtrd 4015 | . . . . . 6 |
86 | 71, 44, 85 | ltled 8038 | . . . . 5 |
87 | 11, 44, 70, 86 | lemulge11d 8853 | . . . 4 |
88 | 11 | recnd 7948 | . . . . . 6 |
89 | 81 | recnd 7948 | . . . . . 6 |
90 | 23 | rpcnd 9655 | . . . . . 6 |
91 | 88, 89, 90 | mulassd 7943 | . . . . 5 |
92 | 88, 89 | mulcomd 7941 | . . . . . . 7 |
93 | 10 | recnd 7948 | . . . . . . . 8 |
94 | subsq 10582 | . . . . . . . 8 | |
95 | 57, 93, 94 | syl2anc 409 | . . . . . . 7 |
96 | 92, 95 | eqtr4d 2206 | . . . . . 6 |
97 | 96 | oveq1d 5868 | . . . . 5 |
98 | 91, 97 | eqtr3d 2205 | . . . 4 |
99 | 87, 98 | breqtrd 4015 | . . 3 |
100 | 1, 2, 3, 5, 8, 65 | resqrexlemnmsq 10981 | . . . 4 |
101 | 14, 40, 23, 100 | ltmul1dd 9709 | . . 3 |
102 | 11, 25, 41, 99, 101 | lelttrd 8044 | . 2 |
103 | 40 | recnd 7948 | . . . . . 6 |
104 | 19 | nnrpd 9651 | . . . . . . . 8 |
105 | 104, 37 | rpexpcld 10633 | . . . . . . 7 |
106 | 105 | rpcnd 9655 | . . . . . 6 |
107 | 2cnd 8951 | . . . . . 6 | |
108 | 103, 106, 107 | mulassd 7943 | . . . . 5 |
109 | 30 | rpcnd 9655 | . . . . . . . 8 |
110 | 38 | rpcnd 9655 | . . . . . . . 8 |
111 | 38 | rpap0d 9659 | . . . . . . . 8 # |
112 | 109, 110, 106, 111 | div32apd 8731 | . . . . . . 7 |
113 | 4d2e2 9038 | . . . . . . . . . . . 12 | |
114 | 113 | oveq1i 5863 | . . . . . . . . . . 11 |
115 | 34 | rpcnd 9655 | . . . . . . . . . . . 12 |
116 | 104 | rpap0d 9659 | . . . . . . . . . . . 12 # |
117 | nnm1nn0 9176 | . . . . . . . . . . . . 13 | |
118 | 5, 117 | syl 14 | . . . . . . . . . . . 12 |
119 | 115, 107, 116, 118 | expdivapd 10623 | . . . . . . . . . . 11 |
120 | 114, 119 | eqtr3id 2217 | . . . . . . . . . 10 |
121 | 120 | oveq2d 5869 | . . . . . . . . 9 |
122 | 105 | rpap0d 9659 | . . . . . . . . . 10 # |
123 | 110, 106, 111, 122 | recdivapd 8724 | . . . . . . . . 9 |
124 | 121, 123 | eqtrd 2203 | . . . . . . . 8 |
125 | 124 | oveq2d 5869 | . . . . . . 7 |
126 | 112, 125 | eqtr4d 2206 | . . . . . 6 |
127 | 126 | oveq1d 5868 | . . . . 5 |
128 | 108, 127 | eqtr3d 2205 | . . . 4 |
129 | 106, 122 | recclapd 8698 | . . . . 5 |
130 | 109, 129, 107 | mul32d 8072 | . . . 4 |
131 | 128, 130 | eqtrd 2203 | . . 3 |
132 | 109, 107 | mulcld 7940 | . . . 4 |
133 | 132, 106, 122 | divrecapd 8710 | . . 3 |
134 | 131, 133 | eqtr4d 2206 | . 2 |
135 | 102, 134 | breqtrd 4015 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 csn 3583 class class class wbr 3989 cxp 4609 cfv 5198 (class class class)co 5853 cmpo 5855 cc 7772 cr 7773 cc0 7774 c1 7775 caddc 7777 cmul 7779 clt 7954 cle 7955 cmin 8090 cdiv 8589 cn 8878 c2 8929 c4 8931 cn0 9135 cz 9212 crp 9610 cseq 10401 cexp 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-seqfrec 10402 df-exp 10476 |
This theorem is referenced by: resqrexlemcvg 10983 |
Copyright terms: Public domain | W3C validator |