| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemnm | Unicode version | ||
| Description: Lemma for resqrex 11537. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq |
|
| resqrexlemex.a |
|
| resqrexlemex.agt0 |
|
| resqrexlemnmsq.n |
|
| resqrexlemnmsq.m |
|
| resqrexlemnmsq.nm |
|
| Ref | Expression |
|---|---|
| resqrexlemnm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrexlemex.seq |
. . . . . . 7
| |
| 2 | resqrexlemex.a |
. . . . . . 7
| |
| 3 | resqrexlemex.agt0 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | resqrexlemf 11518 |
. . . . . 6
|
| 5 | resqrexlemnmsq.n |
. . . . . 6
| |
| 6 | 4, 5 | ffvelcdmd 5771 |
. . . . 5
|
| 7 | 6 | rpred 9892 |
. . . 4
|
| 8 | resqrexlemnmsq.m |
. . . . . 6
| |
| 9 | 4, 8 | ffvelcdmd 5771 |
. . . . 5
|
| 10 | 9 | rpred 9892 |
. . . 4
|
| 11 | 7, 10 | resubcld 8527 |
. . 3
|
| 12 | 7 | resqcld 10921 |
. . . . 5
|
| 13 | 10 | resqcld 10921 |
. . . . 5
|
| 14 | 12, 13 | resubcld 8527 |
. . . 4
|
| 15 | 2cn 9181 |
. . . . . . 7
| |
| 16 | expm1t 10789 |
. . . . . . 7
| |
| 17 | 15, 5, 16 | sylancr 414 |
. . . . . 6
|
| 18 | 2nn 9272 |
. . . . . . . . 9
| |
| 19 | 18 | a1i 9 |
. . . . . . . 8
|
| 20 | 5 | nnnn0d 9422 |
. . . . . . . 8
|
| 21 | 19, 20 | nnexpcld 10917 |
. . . . . . 7
|
| 22 | 21 | nnrpd 9890 |
. . . . . 6
|
| 23 | 17, 22 | eqeltrrd 2307 |
. . . . 5
|
| 24 | 23 | rpred 9892 |
. . . 4
|
| 25 | 14, 24 | remulcld 8177 |
. . 3
|
| 26 | 1nn 9121 |
. . . . . . . . 9
| |
| 27 | 26 | a1i 9 |
. . . . . . . 8
|
| 28 | 4, 27 | ffvelcdmd 5771 |
. . . . . . 7
|
| 29 | 19 | nnzd 9568 |
. . . . . . 7
|
| 30 | 28, 29 | rpexpcld 10919 |
. . . . . 6
|
| 31 | 4re 9187 |
. . . . . . . . 9
| |
| 32 | 4pos 9207 |
. . . . . . . . 9
| |
| 33 | 31, 32 | elrpii 9852 |
. . . . . . . 8
|
| 34 | 33 | a1i 9 |
. . . . . . 7
|
| 35 | 5 | nnzd 9568 |
. . . . . . . 8
|
| 36 | peano2zm 9484 |
. . . . . . . 8
| |
| 37 | 35, 36 | syl 14 |
. . . . . . 7
|
| 38 | 34, 37 | rpexpcld 10919 |
. . . . . 6
|
| 39 | 30, 38 | rpdivcld 9910 |
. . . . 5
|
| 40 | 39 | rpred 9892 |
. . . 4
|
| 41 | 40, 24 | remulcld 8177 |
. . 3
|
| 42 | 6, 9 | rpaddcld 9908 |
. . . . . . 7
|
| 43 | 42, 23 | rpmulcld 9909 |
. . . . . 6
|
| 44 | 43 | rpred 9892 |
. . . . 5
|
| 45 | 2 | adantr 276 |
. . . . . . . . 9
|
| 46 | 3 | adantr 276 |
. . . . . . . . 9
|
| 47 | 5 | adantr 276 |
. . . . . . . . 9
|
| 48 | 8 | adantr 276 |
. . . . . . . . 9
|
| 49 | simpr 110 |
. . . . . . . . 9
| |
| 50 | 1, 45, 46, 47, 48, 49 | resqrexlemdecn 11523 |
. . . . . . . 8
|
| 51 | 10 | adantr 276 |
. . . . . . . . 9
|
| 52 | 7 | adantr 276 |
. . . . . . . . 9
|
| 53 | difrp 9888 |
. . . . . . . . 9
| |
| 54 | 51, 52, 53 | syl2anc 411 |
. . . . . . . 8
|
| 55 | 50, 54 | mpbid 147 |
. . . . . . 7
|
| 56 | 55 | rpge0d 9896 |
. . . . . 6
|
| 57 | 7 | recnd 8175 |
. . . . . . . . 9
|
| 58 | 57 | subidd 8445 |
. . . . . . . 8
|
| 59 | fveq2 5627 |
. . . . . . . . 9
| |
| 60 | 59 | oveq2d 6017 |
. . . . . . . 8
|
| 61 | 58, 60 | sylan9req 2283 |
. . . . . . 7
|
| 62 | 0re 8146 |
. . . . . . . 8
| |
| 63 | 62 | eqlei 8240 |
. . . . . . 7
|
| 64 | 61, 63 | syl 14 |
. . . . . 6
|
| 65 | resqrexlemnmsq.nm |
. . . . . . 7
| |
| 66 | 8 | nnzd 9568 |
. . . . . . . 8
|
| 67 | zleloe 9493 |
. . . . . . . 8
| |
| 68 | 35, 66, 67 | syl2anc 411 |
. . . . . . 7
|
| 69 | 65, 68 | mpbid 147 |
. . . . . 6
|
| 70 | 56, 64, 69 | mpjaodan 803 |
. . . . 5
|
| 71 | 1red 8161 |
. . . . . 6
| |
| 72 | 21 | nnrecred 9157 |
. . . . . . . . . . 11
|
| 73 | 72 | recnd 8175 |
. . . . . . . . . 10
|
| 74 | 73 | addridd 8295 |
. . . . . . . . 9
|
| 75 | 0red 8147 |
. . . . . . . . . 10
| |
| 76 | 1, 2, 3 | resqrexlemlo 11524 |
. . . . . . . . . . 11
|
| 77 | 5, 76 | mpdan 421 |
. . . . . . . . . 10
|
| 78 | 9 | rpgt0d 9895 |
. . . . . . . . . 10
|
| 79 | 72, 75, 7, 10, 77, 78 | lt2addd 8714 |
. . . . . . . . 9
|
| 80 | 74, 79 | eqbrtrrd 4107 |
. . . . . . . 8
|
| 81 | 7, 10 | readdcld 8176 |
. . . . . . . . 9
|
| 82 | 71, 81, 22 | ltdivmul2d 9945 |
. . . . . . . 8
|
| 83 | 80, 82 | mpbid 147 |
. . . . . . 7
|
| 84 | 17 | oveq2d 6017 |
. . . . . . 7
|
| 85 | 83, 84 | breqtrd 4109 |
. . . . . 6
|
| 86 | 71, 44, 85 | ltled 8265 |
. . . . 5
|
| 87 | 11, 44, 70, 86 | lemulge11d 9084 |
. . . 4
|
| 88 | 11 | recnd 8175 |
. . . . . 6
|
| 89 | 81 | recnd 8175 |
. . . . . 6
|
| 90 | 23 | rpcnd 9894 |
. . . . . 6
|
| 91 | 88, 89, 90 | mulassd 8170 |
. . . . 5
|
| 92 | 88, 89 | mulcomd 8168 |
. . . . . . 7
|
| 93 | 10 | recnd 8175 |
. . . . . . . 8
|
| 94 | subsq 10868 |
. . . . . . . 8
| |
| 95 | 57, 93, 94 | syl2anc 411 |
. . . . . . 7
|
| 96 | 92, 95 | eqtr4d 2265 |
. . . . . 6
|
| 97 | 96 | oveq1d 6016 |
. . . . 5
|
| 98 | 91, 97 | eqtr3d 2264 |
. . . 4
|
| 99 | 87, 98 | breqtrd 4109 |
. . 3
|
| 100 | 1, 2, 3, 5, 8, 65 | resqrexlemnmsq 11528 |
. . . 4
|
| 101 | 14, 40, 23, 100 | ltmul1dd 9948 |
. . 3
|
| 102 | 11, 25, 41, 99, 101 | lelttrd 8271 |
. 2
|
| 103 | 40 | recnd 8175 |
. . . . . 6
|
| 104 | 19 | nnrpd 9890 |
. . . . . . . 8
|
| 105 | 104, 37 | rpexpcld 10919 |
. . . . . . 7
|
| 106 | 105 | rpcnd 9894 |
. . . . . 6
|
| 107 | 2cnd 9183 |
. . . . . 6
| |
| 108 | 103, 106, 107 | mulassd 8170 |
. . . . 5
|
| 109 | 30 | rpcnd 9894 |
. . . . . . . 8
|
| 110 | 38 | rpcnd 9894 |
. . . . . . . 8
|
| 111 | 38 | rpap0d 9898 |
. . . . . . . 8
|
| 112 | 109, 110, 106, 111 | div32apd 8961 |
. . . . . . 7
|
| 113 | 4d2e2 9271 |
. . . . . . . . . . . 12
| |
| 114 | 113 | oveq1i 6011 |
. . . . . . . . . . 11
|
| 115 | 34 | rpcnd 9894 |
. . . . . . . . . . . 12
|
| 116 | 104 | rpap0d 9898 |
. . . . . . . . . . . 12
|
| 117 | nnm1nn0 9410 |
. . . . . . . . . . . . 13
| |
| 118 | 5, 117 | syl 14 |
. . . . . . . . . . . 12
|
| 119 | 115, 107, 116, 118 | expdivapd 10909 |
. . . . . . . . . . 11
|
| 120 | 114, 119 | eqtr3id 2276 |
. . . . . . . . . 10
|
| 121 | 120 | oveq2d 6017 |
. . . . . . . . 9
|
| 122 | 105 | rpap0d 9898 |
. . . . . . . . . 10
|
| 123 | 110, 106, 111, 122 | recdivapd 8954 |
. . . . . . . . 9
|
| 124 | 121, 123 | eqtrd 2262 |
. . . . . . . 8
|
| 125 | 124 | oveq2d 6017 |
. . . . . . 7
|
| 126 | 112, 125 | eqtr4d 2265 |
. . . . . 6
|
| 127 | 126 | oveq1d 6016 |
. . . . 5
|
| 128 | 108, 127 | eqtr3d 2264 |
. . . 4
|
| 129 | 106, 122 | recclapd 8928 |
. . . . 5
|
| 130 | 109, 129, 107 | mul32d 8299 |
. . . 4
|
| 131 | 128, 130 | eqtrd 2262 |
. . 3
|
| 132 | 109, 107 | mulcld 8167 |
. . . 4
|
| 133 | 132, 106, 122 | divrecapd 8940 |
. . 3
|
| 134 | 131, 133 | eqtr4d 2265 |
. 2
|
| 135 | 102, 134 | breqtrd 4109 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-rp 9850 df-seqfrec 10670 df-exp 10761 |
| This theorem is referenced by: resqrexlemcvg 11530 |
| Copyright terms: Public domain | W3C validator |