ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnm Unicode version

Theorem resqrexlemnm 10416
Description: Lemma for resqrex 10424. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemnmsq.n  |-  ( ph  ->  N  e.  NN )
resqrexlemnmsq.m  |-  ( ph  ->  M  e.  NN )
resqrexlemnmsq.nm  |-  ( ph  ->  N  <_  M )
Assertion
Ref Expression
resqrexlemnm  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <  ( (
( ( F ` 
1 ) ^ 2 )  x.  2 )  /  ( 2 ^ ( N  -  1 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z    y, M, z    y, N, z
Allowed substitution hints:    F( y, z)

Proof of Theorem resqrexlemnm
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 10405 . . . . . 6  |-  ( ph  ->  F : NN --> RR+ )
5 resqrexlemnmsq.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
64, 5ffvelrnd 5419 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
76rpred 9142 . . . 4  |-  ( ph  ->  ( F `  N
)  e.  RR )
8 resqrexlemnmsq.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
94, 8ffvelrnd 5419 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  RR+ )
109rpred 9142 . . . 4  |-  ( ph  ->  ( F `  M
)  e.  RR )
117, 10resubcld 7838 . . 3  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  e.  RR )
127resqcld 10077 . . . . 5  |-  ( ph  ->  ( ( F `  N ) ^ 2 )  e.  RR )
1310resqcld 10077 . . . . 5  |-  ( ph  ->  ( ( F `  M ) ^ 2 )  e.  RR )
1412, 13resubcld 7838 . . . 4  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  e.  RR )
15 2cn 8464 . . . . . . 7  |-  2  e.  CC
16 expm1t 9948 . . . . . . 7  |-  ( ( 2  e.  CC  /\  N  e.  NN )  ->  ( 2 ^ N
)  =  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) )
1715, 5, 16sylancr 405 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  =  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) )
18 2nn 8547 . . . . . . . . 9  |-  2  e.  NN
1918a1i 9 . . . . . . . 8  |-  ( ph  ->  2  e.  NN )
205nnnn0d 8696 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
2119, 20nnexpcld 10073 . . . . . . 7  |-  ( ph  ->  ( 2 ^ N
)  e.  NN )
2221nnrpd 9141 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  e.  RR+ )
2317, 22eqeltrrd 2165 . . . . 5  |-  ( ph  ->  ( ( 2 ^ ( N  -  1 ) )  x.  2 )  e.  RR+ )
2423rpred 9142 . . . 4  |-  ( ph  ->  ( ( 2 ^ ( N  -  1 ) )  x.  2 )  e.  RR )
2514, 24remulcld 7497 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR )
26 1nn 8405 . . . . . . . . 9  |-  1  e.  NN
2726a1i 9 . . . . . . . 8  |-  ( ph  ->  1  e.  NN )
284, 27ffvelrnd 5419 . . . . . . 7  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
2919nnzd 8837 . . . . . . 7  |-  ( ph  ->  2  e.  ZZ )
3028, 29rpexpcld 10075 . . . . . 6  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
31 4re 8470 . . . . . . . . 9  |-  4  e.  RR
32 4pos 8490 . . . . . . . . 9  |-  0  <  4
3331, 32elrpii 9106 . . . . . . . 8  |-  4  e.  RR+
3433a1i 9 . . . . . . 7  |-  ( ph  ->  4  e.  RR+ )
355nnzd 8837 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
36 peano2zm 8758 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
3735, 36syl 14 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
3834, 37rpexpcld 10075 . . . . . 6  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) )  e.  RR+ )
3930, 38rpdivcld 9160 . . . . 5  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR+ )
4039rpred 9142 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR )
4140, 24remulcld 7497 . . 3  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR )
426, 9rpaddcld 9158 . . . . . . 7  |-  ( ph  ->  ( ( F `  N )  +  ( F `  M ) )  e.  RR+ )
4342, 23rpmulcld 9159 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 N )  +  ( F `  M
) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR+ )
4443rpred 9142 . . . . 5  |-  ( ph  ->  ( ( ( F `
 N )  +  ( F `  M
) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR )
452adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  A  e.  RR )
463adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  0  <_  A )
475adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  N  e.  NN )
488adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  M  e.  NN )
49 simpr 108 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
501, 45, 46, 47, 48, 49resqrexlemdecn 10410 . . . . . . . 8  |-  ( (
ph  /\  N  <  M )  ->  ( F `  M )  <  ( F `  N )
)
5110adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  ( F `  M )  e.  RR )
527adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  ( F `  N )  e.  RR )
53 difrp 9139 . . . . . . . . 9  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  N )  e.  RR )  -> 
( ( F `  M )  <  ( F `  N )  <->  ( ( F `  N
)  -  ( F `
 M ) )  e.  RR+ ) )
5451, 52, 53syl2anc 403 . . . . . . . 8  |-  ( (
ph  /\  N  <  M )  ->  ( ( F `  M )  <  ( F `  N
)  <->  ( ( F `
 N )  -  ( F `  M ) )  e.  RR+ )
)
5550, 54mpbid 145 . . . . . . 7  |-  ( (
ph  /\  N  <  M )  ->  ( ( F `  N )  -  ( F `  M ) )  e.  RR+ )
5655rpge0d 9146 . . . . . 6  |-  ( (
ph  /\  N  <  M )  ->  0  <_  ( ( F `  N
)  -  ( F `
 M ) ) )
577recnd 7495 . . . . . . . . 9  |-  ( ph  ->  ( F `  N
)  e.  CC )
5857subidd 7760 . . . . . . . 8  |-  ( ph  ->  ( ( F `  N )  -  ( F `  N )
)  =  0 )
59 fveq2 5289 . . . . . . . . 9  |-  ( N  =  M  ->  ( F `  N )  =  ( F `  M ) )
6059oveq2d 5650 . . . . . . . 8  |-  ( N  =  M  ->  (
( F `  N
)  -  ( F `
 N ) )  =  ( ( F `
 N )  -  ( F `  M ) ) )
6158, 60sylan9req 2141 . . . . . . 7  |-  ( (
ph  /\  N  =  M )  ->  0  =  ( ( F `
 N )  -  ( F `  M ) ) )
62 0re 7467 . . . . . . . 8  |-  0  e.  RR
6362eqlei 7557 . . . . . . 7  |-  ( 0  =  ( ( F `
 N )  -  ( F `  M ) )  ->  0  <_  ( ( F `  N
)  -  ( F `
 M ) ) )
6461, 63syl 14 . . . . . 6  |-  ( (
ph  /\  N  =  M )  ->  0  <_  ( ( F `  N )  -  ( F `  M )
) )
65 resqrexlemnmsq.nm . . . . . . 7  |-  ( ph  ->  N  <_  M )
668nnzd 8837 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
67 zleloe 8767 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  <_  M  <->  ( N  <  M  \/  N  =  M )
) )
6835, 66, 67syl2anc 403 . . . . . . 7  |-  ( ph  ->  ( N  <_  M  <->  ( N  <  M  \/  N  =  M )
) )
6965, 68mpbid 145 . . . . . 6  |-  ( ph  ->  ( N  <  M  \/  N  =  M
) )
7056, 64, 69mpjaodan 747 . . . . 5  |-  ( ph  ->  0  <_  ( ( F `  N )  -  ( F `  M ) ) )
71 1red 7482 . . . . . 6  |-  ( ph  ->  1  e.  RR )
7221nnrecred 8440 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  e.  RR )
7372recnd 7495 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  e.  CC )
7473addid1d 7610 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
( 2 ^ N
) )  +  0 )  =  ( 1  /  ( 2 ^ N ) ) )
75 0red 7468 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
761, 2, 3resqrexlemlo 10411 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) )
775, 76mpdan 412 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  <  ( F `
 N ) )
789rpgt0d 9145 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( F `
 M ) )
7972, 75, 7, 10, 77, 78lt2addd 8020 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
( 2 ^ N
) )  +  0 )  <  ( ( F `  N )  +  ( F `  M ) ) )
8074, 79eqbrtrrd 3859 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  <  ( ( F `  N )  +  ( F `  M ) ) )
817, 10readdcld 7496 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  N )  +  ( F `  M ) )  e.  RR )
8271, 81, 22ltdivmul2d 9195 . . . . . . . 8  |-  ( ph  ->  ( ( 1  / 
( 2 ^ N
) )  <  (
( F `  N
)  +  ( F `
 M ) )  <->  1  <  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( 2 ^ N ) ) ) )
8380, 82mpbid 145 . . . . . . 7  |-  ( ph  ->  1  <  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( 2 ^ N ) ) )
8417oveq2d 5650 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 N )  +  ( F `  M
) )  x.  (
2 ^ N ) )  =  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
8583, 84breqtrd 3861 . . . . . 6  |-  ( ph  ->  1  <  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
8671, 44, 85ltled 7581 . . . . 5  |-  ( ph  ->  1  <_  ( (
( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
8711, 44, 70, 86lemulge11d 8370 . . . 4  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <_  ( (
( F `  N
)  -  ( F `
 M ) )  x.  ( ( ( F `  N )  +  ( F `  M ) )  x.  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) ) ) )
8811recnd 7495 . . . . . 6  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  e.  CC )
8981recnd 7495 . . . . . 6  |-  ( ph  ->  ( ( F `  N )  +  ( F `  M ) )  e.  CC )
9023rpcnd 9144 . . . . . 6  |-  ( ph  ->  ( ( 2 ^ ( N  -  1 ) )  x.  2 )  e.  CC )
9188, 89, 90mulassd 7490 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( F `  N
)  -  ( F `
 M ) )  x.  ( ( ( F `  N )  +  ( F `  M ) )  x.  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) ) ) )
9288, 89mulcomd 7488 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  =  ( ( ( F `  N )  +  ( F `  M ) )  x.  ( ( F `  N )  -  ( F `  M )
) ) )
9310recnd 7495 . . . . . . . 8  |-  ( ph  ->  ( F `  M
)  e.  CC )
94 subsq 10026 . . . . . . . 8  |-  ( ( ( F `  N
)  e.  CC  /\  ( F `  M )  e.  CC )  -> 
( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  =  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( F `
 N )  -  ( F `  M ) ) ) )
9557, 93, 94syl2anc 403 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  =  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( F `
 N )  -  ( F `  M ) ) ) )
9692, 95eqtr4d 2123 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  =  ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) ) )
9796oveq1d 5649 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
9891, 97eqtr3d 2122 . . . 4  |-  ( ph  ->  ( ( ( F `
 N )  -  ( F `  M ) )  x.  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )  =  ( ( ( ( F `  N
) ^ 2 )  -  ( ( F `
 M ) ^
2 ) )  x.  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) ) )
9987, 98breqtrd 3861 . . 3  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <_  ( (
( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
1001, 2, 3, 5, 8, 65resqrexlemnmsq 10415 . . . 4  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
10114, 40, 23, 100ltmul1dd 9198 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  <  ( ( ( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( N  - 
1 ) ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
10211, 25, 41, 99, 101lelttrd 7587 . 2  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <  ( (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( N  - 
1 ) ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
10340recnd 7495 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  CC )
10419nnrpd 9141 . . . . . . . 8  |-  ( ph  ->  2  e.  RR+ )
105104, 37rpexpcld 10075 . . . . . . 7  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) )  e.  RR+ )
106105rpcnd 9144 . . . . . 6  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) )  e.  CC )
107 2cnd 8466 . . . . . 6  |-  ( ph  ->  2  e.  CC )
108103, 106, 107mulassd 7490 . . . . 5  |-  ( ph  ->  ( ( ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) )  x.  ( 2 ^ ( N  -  1 ) ) )  x.  2 )  =  ( ( ( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( N  - 
1 ) ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
10930rpcnd 9144 . . . . . . . 8  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  CC )
11038rpcnd 9144 . . . . . . . 8  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) )  e.  CC )
11138rpap0d 9148 . . . . . . . 8  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) ) #  0 )
112109, 110, 106, 111div32apd 8253 . . . . . . 7  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
2 ^ ( N  -  1 ) ) )  =  ( ( ( F `  1
) ^ 2 )  x.  ( ( 2 ^ ( N  - 
1 ) )  / 
( 4 ^ ( N  -  1 ) ) ) ) )
113 4d2e2 8546 . . . . . . . . . . . 12  |-  ( 4  /  2 )  =  2
114113oveq1i 5644 . . . . . . . . . . 11  |-  ( ( 4  /  2 ) ^ ( N  - 
1 ) )  =  ( 2 ^ ( N  -  1 ) )
11534rpcnd 9144 . . . . . . . . . . . 12  |-  ( ph  ->  4  e.  CC )
116104rpap0d 9148 . . . . . . . . . . . 12  |-  ( ph  ->  2 #  0 )
117 nnm1nn0 8684 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1185, 117syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
119115, 107, 116, 118expdivapd 10065 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 4  / 
2 ) ^ ( N  -  1 ) )  =  ( ( 4 ^ ( N  -  1 ) )  /  ( 2 ^ ( N  -  1 ) ) ) )
120114, 119syl5eqr 2134 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) )  =  ( ( 4 ^ ( N  -  1 ) )  /  ( 2 ^ ( N  -  1 ) ) ) )
121120oveq2d 5650 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  (
2 ^ ( N  -  1 ) ) )  =  ( 1  /  ( ( 4 ^ ( N  - 
1 ) )  / 
( 2 ^ ( N  -  1 ) ) ) ) )
122105rpap0d 9148 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) ) #  0 )
123110, 106, 111, 122recdivapd 8247 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  (
( 4 ^ ( N  -  1 ) )  /  ( 2 ^ ( N  - 
1 ) ) ) )  =  ( ( 2 ^ ( N  -  1 ) )  /  ( 4 ^ ( N  -  1 ) ) ) )
124121, 123eqtrd 2120 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
2 ^ ( N  -  1 ) ) )  =  ( ( 2 ^ ( N  -  1 ) )  /  ( 4 ^ ( N  -  1 ) ) ) )
125124oveq2d 5650 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  x.  (
1  /  ( 2 ^ ( N  - 
1 ) ) ) )  =  ( ( ( F `  1
) ^ 2 )  x.  ( ( 2 ^ ( N  - 
1 ) )  / 
( 4 ^ ( N  -  1 ) ) ) ) )
126112, 125eqtr4d 2123 . . . . . 6  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
2 ^ ( N  -  1 ) ) )  =  ( ( ( F `  1
) ^ 2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
127126oveq1d 5649 . . . . 5  |-  ( ph  ->  ( ( ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) )  x.  ( 2 ^ ( N  -  1 ) ) )  x.  2 )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  ( 1  /  ( 2 ^ ( N  -  1 ) ) ) )  x.  2 ) )
128108, 127eqtr3d 2122 . . . 4  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  ( 1  /  ( 2 ^ ( N  -  1 ) ) ) )  x.  2 ) )
129106, 122recclapd 8222 . . . . 5  |-  ( ph  ->  ( 1  /  (
2 ^ ( N  -  1 ) ) )  e.  CC )
130109, 129, 107mul32d 7614 . . . 4  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  x.  ( 1  /  (
2 ^ ( N  -  1 ) ) ) )  x.  2 )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
131128, 130eqtrd 2120 . . 3  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
132109, 107mulcld 7487 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  x.  2 )  e.  CC )
133132, 106, 122divrecapd 8233 . . 3  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( N  -  1 ) ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
134131, 133eqtr4d 2123 . 2  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  /  ( 2 ^ ( N  -  1 ) ) ) )
135102, 134breqtrd 3861 1  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <  ( (
( ( F ` 
1 ) ^ 2 )  x.  2 )  /  ( 2 ^ ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    = wceq 1289    e. wcel 1438   {csn 3441   class class class wbr 3837    X. cxp 4426   ` cfv 5002  (class class class)co 5634    |-> cmpt2 5636   CCcc 7327   RRcr 7328   0cc0 7329   1c1 7330    + caddc 7332    x. cmul 7334    < clt 7501    <_ cle 7502    - cmin 7632    / cdiv 8113   NNcn 8394   2c2 8444   4c4 8446   NN0cn0 8643   ZZcz 8720   RR+crp 9103    seqcseq 9817   ^cexp 9919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-rp 9104  df-iseq 9818  df-seq3 9819  df-exp 9920
This theorem is referenced by:  resqrexlemcvg  10417
  Copyright terms: Public domain W3C validator