| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvunsng | Unicode version | ||
| Description: Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.) |
| Ref | Expression |
|---|---|
| fvunsng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 3695 |
. . . 4
| |
| 2 | fvres 5651 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | resundir 5019 |
. . . . 5
| |
| 5 | elsni 3684 |
. . . . . . . . 9
| |
| 6 | 5 | necon3ai 2449 |
. . . . . . . 8
|
| 7 | ressnop0 5820 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
|
| 9 | 8 | uneq2d 3358 |
. . . . . 6
|
| 10 | un0 3525 |
. . . . . 6
| |
| 11 | 9, 10 | eqtrdi 2278 |
. . . . 5
|
| 12 | 4, 11 | eqtrid 2274 |
. . . 4
|
| 13 | 12 | fveq1d 5629 |
. . 3
|
| 14 | 3, 13 | sylan9req 2283 |
. 2
|
| 15 | fvres 5651 |
. . . 4
| |
| 16 | 1, 15 | syl 14 |
. . 3
|
| 17 | 16 | adantr 276 |
. 2
|
| 18 | 14, 17 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-res 4731 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: fvpr1 5843 fvpr1g 5845 fvpr2g 5846 fvtp1g 5847 tfrlemisucaccv 6471 tfr1onlemsucaccv 6487 tfrcllemsucaccv 6500 ac6sfi 7060 0tonninf 10662 1tonninf 10663 hashennn 11002 zfz1isolemiso 11061 cats1un 11253 nninfctlemfo 12561 |
| Copyright terms: Public domain | W3C validator |