ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvunsng Unicode version

Theorem fvunsng 5690
Description: Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.)
Assertion
Ref Expression
fvunsng  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  u.  {
<. B ,  C >. } ) `  D )  =  ( A `  D ) )

Proof of Theorem fvunsng
StepHypRef Expression
1 snidg 3612 . . . 4  |-  ( D  e.  V  ->  D  e.  { D } )
2 fvres 5520 . . . 4  |-  ( D  e.  { D }  ->  ( ( ( A  u.  { <. B ,  C >. } )  |`  { D } ) `  D )  =  ( ( A  u.  { <. B ,  C >. } ) `  D ) )
31, 2syl 14 . . 3  |-  ( D  e.  V  ->  (
( ( A  u.  {
<. B ,  C >. } )  |`  { D } ) `  D
)  =  ( ( A  u.  { <. B ,  C >. } ) `
 D ) )
4 resundir 4905 . . . . 5  |-  ( ( A  u.  { <. B ,  C >. } )  |`  { D } )  =  ( ( A  |`  { D } )  u.  ( { <. B ,  C >. }  |`  { D } ) )
5 elsni 3601 . . . . . . . . 9  |-  ( B  e.  { D }  ->  B  =  D )
65necon3ai 2389 . . . . . . . 8  |-  ( B  =/=  D  ->  -.  B  e.  { D } )
7 ressnop0 5677 . . . . . . . 8  |-  ( -.  B  e.  { D }  ->  ( { <. B ,  C >. }  |`  { D } )  =  (/) )
86, 7syl 14 . . . . . . 7  |-  ( B  =/=  D  ->  ( { <. B ,  C >. }  |`  { D } )  =  (/) )
98uneq2d 3281 . . . . . 6  |-  ( B  =/=  D  ->  (
( A  |`  { D } )  u.  ( { <. B ,  C >. }  |`  { D } ) )  =  ( ( A  |`  { D } )  u.  (/) ) )
10 un0 3448 . . . . . 6  |-  ( ( A  |`  { D } )  u.  (/) )  =  ( A  |`  { D } )
119, 10eqtrdi 2219 . . . . 5  |-  ( B  =/=  D  ->  (
( A  |`  { D } )  u.  ( { <. B ,  C >. }  |`  { D } ) )  =  ( A  |`  { D } ) )
124, 11eqtrid 2215 . . . 4  |-  ( B  =/=  D  ->  (
( A  u.  { <. B ,  C >. } )  |`  { D } )  =  ( A  |`  { D } ) )
1312fveq1d 5498 . . 3  |-  ( B  =/=  D  ->  (
( ( A  u.  {
<. B ,  C >. } )  |`  { D } ) `  D
)  =  ( ( A  |`  { D } ) `  D
) )
143, 13sylan9req 2224 . 2  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  u.  {
<. B ,  C >. } ) `  D )  =  ( ( A  |`  { D } ) `
 D ) )
15 fvres 5520 . . . 4  |-  ( D  e.  { D }  ->  ( ( A  |`  { D } ) `  D )  =  ( A `  D ) )
161, 15syl 14 . . 3  |-  ( D  e.  V  ->  (
( A  |`  { D } ) `  D
)  =  ( A `
 D ) )
1716adantr 274 . 2  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  |`  { D } ) `  D )  =  ( A `  D ) )
1814, 17eqtrd 2203 1  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  u.  {
<. B ,  C >. } ) `  D )  =  ( A `  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    =/= wne 2340    u. cun 3119   (/)c0 3414   {csn 3583   <.cop 3586    |` cres 4613   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-res 4623  df-iota 5160  df-fv 5206
This theorem is referenced by:  fvpr1  5700  fvpr1g  5702  fvpr2g  5703  fvtp1g  5704  tfrlemisucaccv  6304  tfr1onlemsucaccv  6320  tfrcllemsucaccv  6333  ac6sfi  6876  0tonninf  10395  1tonninf  10396  hashennn  10714  zfz1isolemiso  10774
  Copyright terms: Public domain W3C validator