| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvunsng | Unicode version | ||
| Description: Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.) | 
| Ref | Expression | 
|---|---|
| fvunsng | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snidg 3651 | 
. . . 4
 | |
| 2 | fvres 5582 | 
. . . 4
 | |
| 3 | 1, 2 | syl 14 | 
. . 3
 | 
| 4 | resundir 4960 | 
. . . . 5
 | |
| 5 | elsni 3640 | 
. . . . . . . . 9
 | |
| 6 | 5 | necon3ai 2416 | 
. . . . . . . 8
 | 
| 7 | ressnop0 5743 | 
. . . . . . . 8
 | |
| 8 | 6, 7 | syl 14 | 
. . . . . . 7
 | 
| 9 | 8 | uneq2d 3317 | 
. . . . . 6
 | 
| 10 | un0 3484 | 
. . . . . 6
 | |
| 11 | 9, 10 | eqtrdi 2245 | 
. . . . 5
 | 
| 12 | 4, 11 | eqtrid 2241 | 
. . . 4
 | 
| 13 | 12 | fveq1d 5560 | 
. . 3
 | 
| 14 | 3, 13 | sylan9req 2250 | 
. 2
 | 
| 15 | fvres 5582 | 
. . . 4
 | |
| 16 | 1, 15 | syl 14 | 
. . 3
 | 
| 17 | 16 | adantr 276 | 
. 2
 | 
| 18 | 14, 17 | eqtrd 2229 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-res 4675 df-iota 5219 df-fv 5266 | 
| This theorem is referenced by: fvpr1 5766 fvpr1g 5768 fvpr2g 5769 fvtp1g 5770 tfrlemisucaccv 6383 tfr1onlemsucaccv 6399 tfrcllemsucaccv 6412 ac6sfi 6959 0tonninf 10532 1tonninf 10533 hashennn 10872 zfz1isolemiso 10931 nninfctlemfo 12207 | 
| Copyright terms: Public domain | W3C validator |