ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvunsng Unicode version

Theorem fvunsng 5679
Description: Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.)
Assertion
Ref Expression
fvunsng  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  u.  {
<. B ,  C >. } ) `  D )  =  ( A `  D ) )

Proof of Theorem fvunsng
StepHypRef Expression
1 snidg 3605 . . . 4  |-  ( D  e.  V  ->  D  e.  { D } )
2 fvres 5510 . . . 4  |-  ( D  e.  { D }  ->  ( ( ( A  u.  { <. B ,  C >. } )  |`  { D } ) `  D )  =  ( ( A  u.  { <. B ,  C >. } ) `  D ) )
31, 2syl 14 . . 3  |-  ( D  e.  V  ->  (
( ( A  u.  {
<. B ,  C >. } )  |`  { D } ) `  D
)  =  ( ( A  u.  { <. B ,  C >. } ) `
 D ) )
4 resundir 4898 . . . . 5  |-  ( ( A  u.  { <. B ,  C >. } )  |`  { D } )  =  ( ( A  |`  { D } )  u.  ( { <. B ,  C >. }  |`  { D } ) )
5 elsni 3594 . . . . . . . . 9  |-  ( B  e.  { D }  ->  B  =  D )
65necon3ai 2385 . . . . . . . 8  |-  ( B  =/=  D  ->  -.  B  e.  { D } )
7 ressnop0 5666 . . . . . . . 8  |-  ( -.  B  e.  { D }  ->  ( { <. B ,  C >. }  |`  { D } )  =  (/) )
86, 7syl 14 . . . . . . 7  |-  ( B  =/=  D  ->  ( { <. B ,  C >. }  |`  { D } )  =  (/) )
98uneq2d 3276 . . . . . 6  |-  ( B  =/=  D  ->  (
( A  |`  { D } )  u.  ( { <. B ,  C >. }  |`  { D } ) )  =  ( ( A  |`  { D } )  u.  (/) ) )
10 un0 3442 . . . . . 6  |-  ( ( A  |`  { D } )  u.  (/) )  =  ( A  |`  { D } )
119, 10eqtrdi 2215 . . . . 5  |-  ( B  =/=  D  ->  (
( A  |`  { D } )  u.  ( { <. B ,  C >. }  |`  { D } ) )  =  ( A  |`  { D } ) )
124, 11syl5eq 2211 . . . 4  |-  ( B  =/=  D  ->  (
( A  u.  { <. B ,  C >. } )  |`  { D } )  =  ( A  |`  { D } ) )
1312fveq1d 5488 . . 3  |-  ( B  =/=  D  ->  (
( ( A  u.  {
<. B ,  C >. } )  |`  { D } ) `  D
)  =  ( ( A  |`  { D } ) `  D
) )
143, 13sylan9req 2220 . 2  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  u.  {
<. B ,  C >. } ) `  D )  =  ( ( A  |`  { D } ) `
 D ) )
15 fvres 5510 . . . 4  |-  ( D  e.  { D }  ->  ( ( A  |`  { D } ) `  D )  =  ( A `  D ) )
161, 15syl 14 . . 3  |-  ( D  e.  V  ->  (
( A  |`  { D } ) `  D
)  =  ( A `
 D ) )
1716adantr 274 . 2  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  |`  { D } ) `  D )  =  ( A `  D ) )
1814, 17eqtrd 2198 1  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  u.  {
<. B ,  C >. } ) `  D )  =  ( A `  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    =/= wne 2336    u. cun 3114   (/)c0 3409   {csn 3576   <.cop 3579    |` cres 4606   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-res 4616  df-iota 5153  df-fv 5196
This theorem is referenced by:  fvpr1  5689  fvpr1g  5691  fvpr2g  5692  fvtp1g  5693  tfrlemisucaccv  6293  tfr1onlemsucaccv  6309  tfrcllemsucaccv  6322  ac6sfi  6864  0tonninf  10374  1tonninf  10375  hashennn  10693  zfz1isolemiso  10752
  Copyright terms: Public domain W3C validator