ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvunsng Unicode version

Theorem fvunsng 5833
Description: Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.)
Assertion
Ref Expression
fvunsng  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  u.  {
<. B ,  C >. } ) `  D )  =  ( A `  D ) )

Proof of Theorem fvunsng
StepHypRef Expression
1 snidg 3695 . . . 4  |-  ( D  e.  V  ->  D  e.  { D } )
2 fvres 5651 . . . 4  |-  ( D  e.  { D }  ->  ( ( ( A  u.  { <. B ,  C >. } )  |`  { D } ) `  D )  =  ( ( A  u.  { <. B ,  C >. } ) `  D ) )
31, 2syl 14 . . 3  |-  ( D  e.  V  ->  (
( ( A  u.  {
<. B ,  C >. } )  |`  { D } ) `  D
)  =  ( ( A  u.  { <. B ,  C >. } ) `
 D ) )
4 resundir 5019 . . . . 5  |-  ( ( A  u.  { <. B ,  C >. } )  |`  { D } )  =  ( ( A  |`  { D } )  u.  ( { <. B ,  C >. }  |`  { D } ) )
5 elsni 3684 . . . . . . . . 9  |-  ( B  e.  { D }  ->  B  =  D )
65necon3ai 2449 . . . . . . . 8  |-  ( B  =/=  D  ->  -.  B  e.  { D } )
7 ressnop0 5820 . . . . . . . 8  |-  ( -.  B  e.  { D }  ->  ( { <. B ,  C >. }  |`  { D } )  =  (/) )
86, 7syl 14 . . . . . . 7  |-  ( B  =/=  D  ->  ( { <. B ,  C >. }  |`  { D } )  =  (/) )
98uneq2d 3358 . . . . . 6  |-  ( B  =/=  D  ->  (
( A  |`  { D } )  u.  ( { <. B ,  C >. }  |`  { D } ) )  =  ( ( A  |`  { D } )  u.  (/) ) )
10 un0 3525 . . . . . 6  |-  ( ( A  |`  { D } )  u.  (/) )  =  ( A  |`  { D } )
119, 10eqtrdi 2278 . . . . 5  |-  ( B  =/=  D  ->  (
( A  |`  { D } )  u.  ( { <. B ,  C >. }  |`  { D } ) )  =  ( A  |`  { D } ) )
124, 11eqtrid 2274 . . . 4  |-  ( B  =/=  D  ->  (
( A  u.  { <. B ,  C >. } )  |`  { D } )  =  ( A  |`  { D } ) )
1312fveq1d 5629 . . 3  |-  ( B  =/=  D  ->  (
( ( A  u.  {
<. B ,  C >. } )  |`  { D } ) `  D
)  =  ( ( A  |`  { D } ) `  D
) )
143, 13sylan9req 2283 . 2  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  u.  {
<. B ,  C >. } ) `  D )  =  ( ( A  |`  { D } ) `
 D ) )
15 fvres 5651 . . . 4  |-  ( D  e.  { D }  ->  ( ( A  |`  { D } ) `  D )  =  ( A `  D ) )
161, 15syl 14 . . 3  |-  ( D  e.  V  ->  (
( A  |`  { D } ) `  D
)  =  ( A `
 D ) )
1716adantr 276 . 2  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  |`  { D } ) `  D )  =  ( A `  D ) )
1814, 17eqtrd 2262 1  |-  ( ( D  e.  V  /\  B  =/=  D )  -> 
( ( A  u.  {
<. B ,  C >. } ) `  D )  =  ( A `  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400    u. cun 3195   (/)c0 3491   {csn 3666   <.cop 3669    |` cres 4721   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-res 4731  df-iota 5278  df-fv 5326
This theorem is referenced by:  fvpr1  5843  fvpr1g  5845  fvpr2g  5846  fvtp1g  5847  tfrlemisucaccv  6471  tfr1onlemsucaccv  6487  tfrcllemsucaccv  6500  ac6sfi  7060  0tonninf  10662  1tonninf  10663  hashennn  11002  zfz1isolemiso  11061  cats1un  11253  nninfctlemfo  12561
  Copyright terms: Public domain W3C validator