| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmidmo | Unicode version | ||
| Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| mgmidmo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | 1 | ralimi 2593 |
. . . 4
|
| 3 | simpr 110 |
. . . . 5
| |
| 4 | 3 | ralimi 2593 |
. . . 4
|
| 5 | oveq1 6008 |
. . . . . . . . 9
| |
| 6 | id 19 |
. . . . . . . . 9
| |
| 7 | 5, 6 | eqeq12d 2244 |
. . . . . . . 8
|
| 8 | 7 | rspcva 2905 |
. . . . . . 7
|
| 9 | oveq2 6009 |
. . . . . . . . 9
| |
| 10 | id 19 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eqeq12d 2244 |
. . . . . . . 8
|
| 12 | 11 | rspcva 2905 |
. . . . . . 7
|
| 13 | 8, 12 | sylan9req 2283 |
. . . . . 6
|
| 14 | 13 | an42s 591 |
. . . . 5
|
| 15 | 14 | ex 115 |
. . . 4
|
| 16 | 2, 4, 15 | syl2ani 408 |
. . 3
|
| 17 | 16 | rgen2 2616 |
. 2
|
| 18 | oveq1 6008 |
. . . . 5
| |
| 19 | 18 | eqeq1d 2238 |
. . . 4
|
| 20 | 19 | ovanraleqv 6025 |
. . 3
|
| 21 | 20 | rmo4 2996 |
. 2
|
| 22 | 17, 21 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rmo 2516 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: ismgmid 13410 mndideu 13459 |
| Copyright terms: Public domain | W3C validator |