| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmidmo | Unicode version | ||
| Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| mgmidmo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . 5
| |
| 2 | 1 | ralimi 2560 |
. . . 4
|
| 3 | simpr 110 |
. . . . 5
| |
| 4 | 3 | ralimi 2560 |
. . . 4
|
| 5 | oveq1 5932 |
. . . . . . . . 9
| |
| 6 | id 19 |
. . . . . . . . 9
| |
| 7 | 5, 6 | eqeq12d 2211 |
. . . . . . . 8
|
| 8 | 7 | rspcva 2866 |
. . . . . . 7
|
| 9 | oveq2 5933 |
. . . . . . . . 9
| |
| 10 | id 19 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eqeq12d 2211 |
. . . . . . . 8
|
| 12 | 11 | rspcva 2866 |
. . . . . . 7
|
| 13 | 8, 12 | sylan9req 2250 |
. . . . . 6
|
| 14 | 13 | an42s 589 |
. . . . 5
|
| 15 | 14 | ex 115 |
. . . 4
|
| 16 | 2, 4, 15 | syl2ani 408 |
. . 3
|
| 17 | 16 | rgen2 2583 |
. 2
|
| 18 | oveq1 5932 |
. . . . 5
| |
| 19 | 18 | eqeq1d 2205 |
. . . 4
|
| 20 | 19 | ovanraleqv 5949 |
. . 3
|
| 21 | 20 | rmo4 2957 |
. 2
|
| 22 | 17, 21 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rmo 2483 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: ismgmid 13079 mndideu 13128 |
| Copyright terms: Public domain | W3C validator |