ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmidmo Unicode version

Theorem mgmidmo 13204
Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
mgmidmo  |-  E* u  e.  B  A. x  e.  B  ( (
u  .+  x )  =  x  /\  (
x  .+  u )  =  x )
Distinct variable groups:    x, u, B   
u,  .+ , x

Proof of Theorem mgmidmo
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( ( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  -> 
( u  .+  x
)  =  x )
21ralimi 2569 . . . 4  |-  ( A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  ->  A. x  e.  B  ( u  .+  x )  =  x )
3 simpr 110 . . . . 5  |-  ( ( ( w  .+  x
)  =  x  /\  ( x  .+  w )  =  x )  -> 
( x  .+  w
)  =  x )
43ralimi 2569 . . . 4  |-  ( A. x  e.  B  (
( w  .+  x
)  =  x  /\  ( x  .+  w )  =  x )  ->  A. x  e.  B  ( x  .+  w )  =  x )
5 oveq1 5951 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  .+  w )  =  ( u  .+  w ) )
6 id 19 . . . . . . . . 9  |-  ( x  =  u  ->  x  =  u )
75, 6eqeq12d 2220 . . . . . . . 8  |-  ( x  =  u  ->  (
( x  .+  w
)  =  x  <->  ( u  .+  w )  =  u ) )
87rspcva 2875 . . . . . . 7  |-  ( ( u  e.  B  /\  A. x  e.  B  ( x  .+  w )  =  x )  -> 
( u  .+  w
)  =  u )
9 oveq2 5952 . . . . . . . . 9  |-  ( x  =  w  ->  (
u  .+  x )  =  ( u  .+  w ) )
10 id 19 . . . . . . . . 9  |-  ( x  =  w  ->  x  =  w )
119, 10eqeq12d 2220 . . . . . . . 8  |-  ( x  =  w  ->  (
( u  .+  x
)  =  x  <->  ( u  .+  w )  =  w ) )
1211rspcva 2875 . . . . . . 7  |-  ( ( w  e.  B  /\  A. x  e.  B  ( u  .+  x )  =  x )  -> 
( u  .+  w
)  =  w )
138, 12sylan9req 2259 . . . . . 6  |-  ( ( ( u  e.  B  /\  A. x  e.  B  ( x  .+  w )  =  x )  /\  ( w  e.  B  /\  A. x  e.  B  ( u  .+  x )  =  x ) )  ->  u  =  w )
1413an42s 589 . . . . 5  |-  ( ( ( u  e.  B  /\  w  e.  B
)  /\  ( A. x  e.  B  (
u  .+  x )  =  x  /\  A. x  e.  B  ( x  .+  w )  =  x ) )  ->  u  =  w )
1514ex 115 . . . 4  |-  ( ( u  e.  B  /\  w  e.  B )  ->  ( ( A. x  e.  B  ( u  .+  x )  =  x  /\  A. x  e.  B  ( x  .+  w )  =  x )  ->  u  =  w ) )
162, 4, 15syl2ani 408 . . 3  |-  ( ( u  e.  B  /\  w  e.  B )  ->  ( ( A. x  e.  B  ( (
u  .+  x )  =  x  /\  (
x  .+  u )  =  x )  /\  A. x  e.  B  (
( w  .+  x
)  =  x  /\  ( x  .+  w )  =  x ) )  ->  u  =  w ) )
1716rgen2 2592 . 2  |-  A. u  e.  B  A. w  e.  B  ( ( A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x )  /\  A. x  e.  B  ( (
w  .+  x )  =  x  /\  (
x  .+  w )  =  x ) )  ->  u  =  w )
18 oveq1 5951 . . . . 5  |-  ( u  =  w  ->  (
u  .+  x )  =  ( w  .+  x ) )
1918eqeq1d 2214 . . . 4  |-  ( u  =  w  ->  (
( u  .+  x
)  =  x  <->  ( w  .+  x )  =  x ) )
2019ovanraleqv 5968 . . 3  |-  ( u  =  w  ->  ( A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x )  <->  A. x  e.  B  ( ( w  .+  x )  =  x  /\  ( x  .+  w )  =  x ) ) )
2120rmo4 2966 . 2  |-  ( E* u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  <->  A. u  e.  B  A. w  e.  B  ( ( A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x )  /\  A. x  e.  B  ( (
w  .+  x )  =  x  /\  (
x  .+  w )  =  x ) )  ->  u  =  w )
)
2217, 21mpbir 146 1  |-  E* u  e.  B  A. x  e.  B  ( (
u  .+  x )  =  x  /\  (
x  .+  u )  =  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   E*wrmo 2487  (class class class)co 5944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rmo 2492  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947
This theorem is referenced by:  ismgmid  13209  mndideu  13258
  Copyright terms: Public domain W3C validator