Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mgmidmo | Unicode version |
Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
mgmidmo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . 5 | |
2 | 1 | ralimi 2529 | . . . 4 |
3 | simpr 109 | . . . . 5 | |
4 | 3 | ralimi 2529 | . . . 4 |
5 | oveq1 5849 | . . . . . . . . 9 | |
6 | id 19 | . . . . . . . . 9 | |
7 | 5, 6 | eqeq12d 2180 | . . . . . . . 8 |
8 | 7 | rspcva 2828 | . . . . . . 7 |
9 | oveq2 5850 | . . . . . . . . 9 | |
10 | id 19 | . . . . . . . . 9 | |
11 | 9, 10 | eqeq12d 2180 | . . . . . . . 8 |
12 | 11 | rspcva 2828 | . . . . . . 7 |
13 | 8, 12 | sylan9req 2220 | . . . . . 6 |
14 | 13 | an42s 579 | . . . . 5 |
15 | 14 | ex 114 | . . . 4 |
16 | 2, 4, 15 | syl2ani 406 | . . 3 |
17 | 16 | rgen2 2552 | . 2 |
18 | oveq1 5849 | . . . . 5 | |
19 | 18 | eqeq1d 2174 | . . . 4 |
20 | 19 | ovanraleqv 5866 | . . 3 |
21 | 20 | rmo4 2919 | . 2 |
22 | 17, 21 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 wrmo 2447 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rmo 2452 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: ismgmid 12608 |
Copyright terms: Public domain | W3C validator |