ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcoeqres Unicode version

Theorem funcoeqres 5504
Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
funcoeqres  |-  ( ( Fun  G  /\  ( F  o.  G )  =  H )  ->  ( F  |`  ran  G )  =  ( H  o.  `' G ) )

Proof of Theorem funcoeqres
StepHypRef Expression
1 funcocnv2 5498 . . . 4  |-  ( Fun 
G  ->  ( G  o.  `' G )  =  (  _I  |`  ran  G ) )
21coeq2d 4801 . . 3  |-  ( Fun 
G  ->  ( F  o.  ( G  o.  `' G ) )  =  ( F  o.  (  _I  |`  ran  G ) ) )
3 coass 5159 . . . 4  |-  ( ( F  o.  G )  o.  `' G )  =  ( F  o.  ( G  o.  `' G ) )
43eqcomi 2191 . . 3  |-  ( F  o.  ( G  o.  `' G ) )  =  ( ( F  o.  G )  o.  `' G )
5 coires1 5158 . . 3  |-  ( F  o.  (  _I  |`  ran  G
) )  =  ( F  |`  ran  G )
62, 4, 53eqtr3g 2243 . 2  |-  ( Fun 
G  ->  ( ( F  o.  G )  o.  `' G )  =  ( F  |`  ran  G ) )
7 coeq1 4796 . 2  |-  ( ( F  o.  G )  =  H  ->  (
( F  o.  G
)  o.  `' G
)  =  ( H  o.  `' G ) )
86, 7sylan9req 2241 1  |-  ( ( Fun  G  /\  ( F  o.  G )  =  H )  ->  ( F  |`  ran  G )  =  ( H  o.  `' G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    _I cid 4300   `'ccnv 4637   ran crn 4639    |` cres 4640    o. ccom 4642   Fun wfun 5222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-fun 5230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator