ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcoeqres Unicode version

Theorem funcoeqres 5535
Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
funcoeqres  |-  ( ( Fun  G  /\  ( F  o.  G )  =  H )  ->  ( F  |`  ran  G )  =  ( H  o.  `' G ) )

Proof of Theorem funcoeqres
StepHypRef Expression
1 funcocnv2 5529 . . . 4  |-  ( Fun 
G  ->  ( G  o.  `' G )  =  (  _I  |`  ran  G ) )
21coeq2d 4828 . . 3  |-  ( Fun 
G  ->  ( F  o.  ( G  o.  `' G ) )  =  ( F  o.  (  _I  |`  ran  G ) ) )
3 coass 5188 . . . 4  |-  ( ( F  o.  G )  o.  `' G )  =  ( F  o.  ( G  o.  `' G ) )
43eqcomi 2200 . . 3  |-  ( F  o.  ( G  o.  `' G ) )  =  ( ( F  o.  G )  o.  `' G )
5 coires1 5187 . . 3  |-  ( F  o.  (  _I  |`  ran  G
) )  =  ( F  |`  ran  G )
62, 4, 53eqtr3g 2252 . 2  |-  ( Fun 
G  ->  ( ( F  o.  G )  o.  `' G )  =  ( F  |`  ran  G ) )
7 coeq1 4823 . 2  |-  ( ( F  o.  G )  =  H  ->  (
( F  o.  G
)  o.  `' G
)  =  ( H  o.  `' G ) )
86, 7sylan9req 2250 1  |-  ( ( Fun  G  /\  ( F  o.  G )  =  H )  ->  ( F  |`  ran  G )  =  ( H  o.  `' G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    _I cid 4323   `'ccnv 4662   ran crn 4664    |` cres 4665    o. ccom 4667   Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-fun 5260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator