ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcoeqres Unicode version

Theorem funcoeqres 5553
Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
funcoeqres  |-  ( ( Fun  G  /\  ( F  o.  G )  =  H )  ->  ( F  |`  ran  G )  =  ( H  o.  `' G ) )

Proof of Theorem funcoeqres
StepHypRef Expression
1 funcocnv2 5547 . . . 4  |-  ( Fun 
G  ->  ( G  o.  `' G )  =  (  _I  |`  ran  G ) )
21coeq2d 4840 . . 3  |-  ( Fun 
G  ->  ( F  o.  ( G  o.  `' G ) )  =  ( F  o.  (  _I  |`  ran  G ) ) )
3 coass 5201 . . . 4  |-  ( ( F  o.  G )  o.  `' G )  =  ( F  o.  ( G  o.  `' G ) )
43eqcomi 2209 . . 3  |-  ( F  o.  ( G  o.  `' G ) )  =  ( ( F  o.  G )  o.  `' G )
5 coires1 5200 . . 3  |-  ( F  o.  (  _I  |`  ran  G
) )  =  ( F  |`  ran  G )
62, 4, 53eqtr3g 2261 . 2  |-  ( Fun 
G  ->  ( ( F  o.  G )  o.  `' G )  =  ( F  |`  ran  G ) )
7 coeq1 4835 . 2  |-  ( ( F  o.  G )  =  H  ->  (
( F  o.  G
)  o.  `' G
)  =  ( H  o.  `' G ) )
86, 7sylan9req 2259 1  |-  ( ( Fun  G  /\  ( F  o.  G )  =  H )  ->  ( F  |`  ran  G )  =  ( H  o.  `' G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    _I cid 4335   `'ccnv 4674   ran crn 4676    |` cres 4677    o. ccom 4679   Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-fun 5273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator