ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeq Unicode version

Theorem addlocprlemeq 7455
Description: Lemma for addlocpr 7458. The  Q  =  ( D  +Q  E ) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlemeq  |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )

Proof of Theorem addlocprlemeq
StepHypRef Expression
1 addlocprlem.a . . . . . 6  |-  ( ph  ->  A  e.  P. )
2 addlocprlem.b . . . . . 6  |-  ( ph  ->  B  e.  P. )
3 addlocprlem.qr . . . . . 6  |-  ( ph  ->  Q  <Q  R )
4 addlocprlem.p . . . . . 6  |-  ( ph  ->  P  e.  Q. )
5 addlocprlem.qppr . . . . . 6  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
6 addlocprlem.dlo . . . . . 6  |-  ( ph  ->  D  e.  ( 1st `  A ) )
7 addlocprlem.uup . . . . . 6  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
8 addlocprlem.du . . . . . 6  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
9 addlocprlem.elo . . . . . 6  |-  ( ph  ->  E  e.  ( 1st `  B ) )
10 addlocprlem.tup . . . . . 6  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
11 addlocprlem.et . . . . . 6  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11addlocprlemeqgt 7454 . . . . 5  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
1312adantr 274 . . . 4  |-  ( (
ph  /\  Q  =  ( D  +Q  E
) )  ->  ( U  +Q  T )  <Q 
( ( D  +Q  E )  +Q  ( P  +Q  P ) ) )
14 oveq1 5833 . . . . 5  |-  ( Q  =  ( D  +Q  E )  ->  ( Q  +Q  ( P  +Q  P ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P ) ) )
155, 14sylan9req 2211 . . . 4  |-  ( (
ph  /\  Q  =  ( D  +Q  E
) )  ->  R  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
1613, 15breqtrrd 3994 . . 3  |-  ( (
ph  /\  Q  =  ( D  +Q  E
) )  ->  ( U  +Q  T )  <Q  R )
171, 7jca 304 . . . . 5  |-  ( ph  ->  ( A  e.  P.  /\  U  e.  ( 2nd `  A ) ) )
182, 10jca 304 . . . . 5  |-  ( ph  ->  ( B  e.  P.  /\  T  e.  ( 2nd `  B ) ) )
19 ltrelnq 7287 . . . . . . . 8  |-  <Q  C_  ( Q.  X.  Q. )
2019brel 4640 . . . . . . 7  |-  ( Q 
<Q  R  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )
2120simprd 113 . . . . . 6  |-  ( Q 
<Q  R  ->  R  e. 
Q. )
223, 21syl 14 . . . . 5  |-  ( ph  ->  R  e.  Q. )
23 addnqpru 7452 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  U  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  T  e.  ( 2nd `  B
) ) )  /\  R  e.  Q. )  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
2417, 18, 22, 23syl21anc 1219 . . . 4  |-  ( ph  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
2524adantr 274 . . 3  |-  ( (
ph  /\  Q  =  ( D  +Q  E
) )  ->  (
( U  +Q  T
)  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
2616, 25mpd 13 . 2  |-  ( (
ph  /\  Q  =  ( D  +Q  E
) )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) )
2726ex 114 1  |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   class class class wbr 3967   ` cfv 5172  (class class class)co 5826   1stc1st 6088   2ndc2nd 6089   Q.cnq 7202    +Q cplq 7204    <Q cltq 7207   P.cnp 7213    +P. cpp 7215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-eprel 4251  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-irdg 6319  df-1o 6365  df-oadd 6369  df-omul 6370  df-er 6482  df-ec 6484  df-qs 6488  df-ni 7226  df-pli 7227  df-mi 7228  df-lti 7229  df-plpq 7266  df-mpq 7267  df-enq 7269  df-nqqs 7270  df-plqqs 7271  df-mqqs 7272  df-1nqqs 7273  df-rq 7274  df-ltnqqs 7275  df-inp 7388  df-iplp 7390
This theorem is referenced by:  addlocprlem  7457
  Copyright terms: Public domain W3C validator