ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeq Unicode version

Theorem addlocprlemeq 7552
Description: Lemma for addlocpr 7555. The  Q  =  ( D  +Q  E ) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a  |-  ( ph  ->  A  e.  P. )
addlocprlem.b  |-  ( ph  ->  B  e.  P. )
addlocprlem.qr  |-  ( ph  ->  Q  <Q  R )
addlocprlem.p  |-  ( ph  ->  P  e.  Q. )
addlocprlem.qppr  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
addlocprlem.dlo  |-  ( ph  ->  D  e.  ( 1st `  A ) )
addlocprlem.uup  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
addlocprlem.du  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
addlocprlem.elo  |-  ( ph  ->  E  e.  ( 1st `  B ) )
addlocprlem.tup  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
addlocprlem.et  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
Assertion
Ref Expression
addlocprlemeq  |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )

Proof of Theorem addlocprlemeq
StepHypRef Expression
1 addlocprlem.a . . . . . 6  |-  ( ph  ->  A  e.  P. )
2 addlocprlem.b . . . . . 6  |-  ( ph  ->  B  e.  P. )
3 addlocprlem.qr . . . . . 6  |-  ( ph  ->  Q  <Q  R )
4 addlocprlem.p . . . . . 6  |-  ( ph  ->  P  e.  Q. )
5 addlocprlem.qppr . . . . . 6  |-  ( ph  ->  ( Q  +Q  ( P  +Q  P ) )  =  R )
6 addlocprlem.dlo . . . . . 6  |-  ( ph  ->  D  e.  ( 1st `  A ) )
7 addlocprlem.uup . . . . . 6  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
8 addlocprlem.du . . . . . 6  |-  ( ph  ->  U  <Q  ( D  +Q  P ) )
9 addlocprlem.elo . . . . . 6  |-  ( ph  ->  E  e.  ( 1st `  B ) )
10 addlocprlem.tup . . . . . 6  |-  ( ph  ->  T  e.  ( 2nd `  B ) )
11 addlocprlem.et . . . . . 6  |-  ( ph  ->  T  <Q  ( E  +Q  P ) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11addlocprlemeqgt 7551 . . . . 5  |-  ( ph  ->  ( U  +Q  T
)  <Q  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
1312adantr 276 . . . 4  |-  ( (
ph  /\  Q  =  ( D  +Q  E
) )  ->  ( U  +Q  T )  <Q 
( ( D  +Q  E )  +Q  ( P  +Q  P ) ) )
14 oveq1 5899 . . . . 5  |-  ( Q  =  ( D  +Q  E )  ->  ( Q  +Q  ( P  +Q  P ) )  =  ( ( D  +Q  E )  +Q  ( P  +Q  P ) ) )
155, 14sylan9req 2243 . . . 4  |-  ( (
ph  /\  Q  =  ( D  +Q  E
) )  ->  R  =  ( ( D  +Q  E )  +Q  ( P  +Q  P
) ) )
1613, 15breqtrrd 4046 . . 3  |-  ( (
ph  /\  Q  =  ( D  +Q  E
) )  ->  ( U  +Q  T )  <Q  R )
171, 7jca 306 . . . . 5  |-  ( ph  ->  ( A  e.  P.  /\  U  e.  ( 2nd `  A ) ) )
182, 10jca 306 . . . . 5  |-  ( ph  ->  ( B  e.  P.  /\  T  e.  ( 2nd `  B ) ) )
19 ltrelnq 7384 . . . . . . . 8  |-  <Q  C_  ( Q.  X.  Q. )
2019brel 4693 . . . . . . 7  |-  ( Q 
<Q  R  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )
2120simprd 114 . . . . . 6  |-  ( Q 
<Q  R  ->  R  e. 
Q. )
223, 21syl 14 . . . . 5  |-  ( ph  ->  R  e.  Q. )
23 addnqpru 7549 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  U  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  T  e.  ( 2nd `  B
) ) )  /\  R  e.  Q. )  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
2417, 18, 22, 23syl21anc 1248 . . . 4  |-  ( ph  ->  ( ( U  +Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B
) ) ) )
2524adantr 276 . . 3  |-  ( (
ph  /\  Q  =  ( D  +Q  E
) )  ->  (
( U  +Q  T
)  <Q  R  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
2616, 25mpd 13 . 2  |-  ( (
ph  /\  Q  =  ( D  +Q  E
) )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) )
2726ex 115 1  |-  ( ph  ->  ( Q  =  ( D  +Q  E )  ->  R  e.  ( 2nd `  ( A  +P.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   class class class wbr 4018   ` cfv 5232  (class class class)co 5892   1stc1st 6158   2ndc2nd 6159   Q.cnq 7299    +Q cplq 7301    <Q cltq 7304   P.cnp 7310    +P. cpp 7312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4304  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-irdg 6390  df-1o 6436  df-oadd 6440  df-omul 6441  df-er 6554  df-ec 6556  df-qs 6560  df-ni 7323  df-pli 7324  df-mi 7325  df-lti 7326  df-plpq 7363  df-mpq 7364  df-enq 7366  df-nqqs 7367  df-plqqs 7368  df-mqqs 7369  df-1nqqs 7370  df-rq 7371  df-ltnqqs 7372  df-inp 7485  df-iplp 7487
This theorem is referenced by:  addlocprlem  7554
  Copyright terms: Public domain W3C validator