Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > symdif1 | GIF version |
Description: Two ways to express symmetric difference. This theorem shows the equivalence of the definition of symmetric difference in [Stoll] p. 13 and the restated definition in Example 4.1 of [Stoll] p. 262. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
symdif1 | ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difundir 3375 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) = ((𝐴 ∖ (𝐴 ∩ 𝐵)) ∪ (𝐵 ∖ (𝐴 ∩ 𝐵))) | |
2 | difin 3359 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
3 | incom 3314 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
4 | 3 | difeq2i 3237 | . . . 4 ⊢ (𝐵 ∖ (𝐴 ∩ 𝐵)) = (𝐵 ∖ (𝐵 ∩ 𝐴)) |
5 | difin 3359 | . . . 4 ⊢ (𝐵 ∖ (𝐵 ∩ 𝐴)) = (𝐵 ∖ 𝐴) | |
6 | 4, 5 | eqtri 2186 | . . 3 ⊢ (𝐵 ∖ (𝐴 ∩ 𝐵)) = (𝐵 ∖ 𝐴) |
7 | 2, 6 | uneq12i 3274 | . 2 ⊢ ((𝐴 ∖ (𝐴 ∩ 𝐵)) ∪ (𝐵 ∖ (𝐴 ∩ 𝐵))) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
8 | 1, 7 | eqtr2i 2187 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∖ cdif 3113 ∪ cun 3114 ∩ cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |