![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > symdif1 | GIF version |
Description: Two ways to express symmetric difference. This theorem shows the equivalence of the definition of symmetric difference in [Stoll] p. 13 and the restated definition in Example 4.1 of [Stoll] p. 262. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
symdif1 | ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difundir 3252 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) = ((𝐴 ∖ (𝐴 ∩ 𝐵)) ∪ (𝐵 ∖ (𝐴 ∩ 𝐵))) | |
2 | difin 3236 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
3 | incom 3192 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
4 | 3 | difeq2i 3115 | . . . 4 ⊢ (𝐵 ∖ (𝐴 ∩ 𝐵)) = (𝐵 ∖ (𝐵 ∩ 𝐴)) |
5 | difin 3236 | . . . 4 ⊢ (𝐵 ∖ (𝐵 ∩ 𝐴)) = (𝐵 ∖ 𝐴) | |
6 | 4, 5 | eqtri 2108 | . . 3 ⊢ (𝐵 ∖ (𝐴 ∩ 𝐵)) = (𝐵 ∖ 𝐴) |
7 | 2, 6 | uneq12i 3152 | . 2 ⊢ ((𝐴 ∖ (𝐴 ∩ 𝐵)) ∪ (𝐵 ∖ (𝐴 ∩ 𝐵))) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
8 | 1, 7 | eqtr2i 2109 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∖ cdif 2996 ∪ cun 2997 ∩ cin 2998 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rab 2368 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |