ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  symdif1 GIF version

Theorem symdif1 3442
Description: Two ways to express symmetric difference. This theorem shows the equivalence of the definition of symmetric difference in [Stoll] p. 13 and the restated definition in Example 4.1 of [Stoll] p. 262. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
symdif1 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐴𝐵) ∖ (𝐴𝐵))

Proof of Theorem symdif1
StepHypRef Expression
1 difundir 3430 . 2 ((𝐴𝐵) ∖ (𝐴𝐵)) = ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))
2 difin 3414 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
3 incom 3369 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
43difeq2i 3292 . . . 4 (𝐵 ∖ (𝐴𝐵)) = (𝐵 ∖ (𝐵𝐴))
5 difin 3414 . . . 4 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
64, 5eqtri 2227 . . 3 (𝐵 ∖ (𝐴𝐵)) = (𝐵𝐴)
72, 6uneq12i 3329 . 2 ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵))) = ((𝐴𝐵) ∪ (𝐵𝐴))
81, 7eqtr2i 2228 1 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐴𝐵) ∖ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cdif 3167  cun 3168  cin 3169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator