ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difundir Unicode version

Theorem difundir 3403
Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundir  |-  ( ( A  u.  B ) 
\  C )  =  ( ( A  \  C )  u.  ( B  \  C ) )

Proof of Theorem difundir
StepHypRef Expression
1 indir 3399 . 2  |-  ( ( A  u.  B )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  ( _V  \  C ) )  u.  ( B  i^i  ( _V  \  C ) ) )
2 invdif 3392 . 2  |-  ( ( A  u.  B )  i^i  ( _V  \  C ) )  =  ( ( A  u.  B )  \  C
)
3 invdif 3392 . . 3  |-  ( A  i^i  ( _V  \  C ) )  =  ( A  \  C
)
4 invdif 3392 . . 3  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
53, 4uneq12i 3302 . 2  |-  ( ( A  i^i  ( _V 
\  C ) )  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( ( A  \  C
)  u.  ( B 
\  C ) )
61, 2, 53eqtr3i 2218 1  |-  ( ( A  u.  B ) 
\  C )  =  ( ( A  \  C )  u.  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   _Vcvv 2752    \ cdif 3141    u. cun 3142    i^i cin 3143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-dif 3146  df-un 3148  df-in 3150
This theorem is referenced by:  symdif1  3415  difun2  3517  diftpsn3  3748  unfiin  6943  setsfun0  12516  strleund  12581  strleun  12582
  Copyright terms: Public domain W3C validator