ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid2g Unicode version

Theorem tpid2g 3707
Description: Closed theorem form of tpid2 3706. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
tpid2g  |-  ( A  e.  B  ->  A  e.  { C ,  A ,  D } )

Proof of Theorem tpid2g
StepHypRef Expression
1 eqid 2177 . . 3  |-  A  =  A
213mix2i 1170 . 2  |-  ( A  =  C  \/  A  =  A  \/  A  =  D )
3 eltpg 3638 . 2  |-  ( A  e.  B  ->  ( A  e.  { C ,  A ,  D }  <->  ( A  =  C  \/  A  =  A  \/  A  =  D )
) )
42, 3mpbiri 168 1  |-  ( A  e.  B  ->  A  e.  { C ,  A ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 977    = wceq 1353    e. wcel 2148   {ctp 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3or 979  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-tp 3601
This theorem is referenced by:  rngplusgg  12595  srngplusgd  12606  lmodplusgd  12624  ipsaddgd  12636  ipsvscad  12639  topgrpplusgd  12653
  Copyright terms: Public domain W3C validator