| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpid2g | Unicode version | ||
| Description: Closed theorem form of tpid2 3748. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| tpid2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 |
. . 3
| |
| 2 | 1 | 3mix2i 1173 |
. 2
|
| 3 | eltpg 3680 |
. 2
| |
| 4 | 2, 3 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-sn 3641 df-pr 3642 df-tp 3643 |
| This theorem is referenced by: rngplusgg 13019 srngplusgd 13030 lmodplusgd 13048 ipsaddgd 13060 ipsvscad 13063 topgrpplusgd 13080 |
| Copyright terms: Public domain | W3C validator |