ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid2g Unicode version

Theorem tpid2g 3780
Description: Closed theorem form of tpid2 3779. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
tpid2g  |-  ( A  e.  B  ->  A  e.  { C ,  A ,  D } )

Proof of Theorem tpid2g
StepHypRef Expression
1 eqid 2229 . . 3  |-  A  =  A
213mix2i 1194 . 2  |-  ( A  =  C  \/  A  =  A  \/  A  =  D )
3 eltpg 3711 . 2  |-  ( A  e.  B  ->  ( A  e.  { C ,  A ,  D }  <->  ( A  =  C  \/  A  =  A  \/  A  =  D )
) )
42, 3mpbiri 168 1  |-  ( A  e.  B  ->  A  e.  { C ,  A ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 1001    = wceq 1395    e. wcel 2200   {ctp 3668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-tp 3674
This theorem is referenced by:  rngplusgg  13156  srngplusgd  13167  lmodplusgd  13185  ipsaddgd  13197  ipsvscad  13200  topgrpplusgd  13217
  Copyright terms: Public domain W3C validator