Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tpid2g | Unicode version |
Description: Closed theorem form of tpid2 3668. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
tpid2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2154 | . . 3 | |
2 | 1 | 3mix2i 1155 | . 2 |
3 | eltpg 3600 | . 2 | |
4 | 2, 3 | mpbiri 167 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3o 962 wceq 1332 wcel 2125 ctp 3558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-sn 3562 df-pr 3563 df-tp 3564 |
This theorem is referenced by: rngplusgg 12254 srngplusgd 12261 lmodplusgd 12272 ipsaddgd 12280 ipsvscad 12283 topgrpplusgd 12290 |
Copyright terms: Public domain | W3C validator |