ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid2g GIF version

Theorem tpid2g 3697
Description: Closed theorem form of tpid2 3696. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
tpid2g (𝐴𝐵𝐴 ∈ {𝐶, 𝐴, 𝐷})

Proof of Theorem tpid2g
StepHypRef Expression
1 eqid 2170 . . 3 𝐴 = 𝐴
213mix2i 1165 . 2 (𝐴 = 𝐶𝐴 = 𝐴𝐴 = 𝐷)
3 eltpg 3628 . 2 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐴, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐴𝐴 = 𝐷)))
42, 3mpbiri 167 1 (𝐴𝐵𝐴 ∈ {𝐶, 𝐴, 𝐷})
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 972   = wceq 1348  wcel 2141  {ctp 3585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3or 974  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-tp 3591
This theorem is referenced by:  rngplusgg  12535  srngplusgd  12542  lmodplusgd  12553  ipsaddgd  12561  ipsvscad  12564  topgrpplusgd  12571
  Copyright terms: Public domain W3C validator