| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpid2g | GIF version | ||
| Description: Closed theorem form of tpid2 3756. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| tpid2g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐴, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | 3mix2i 1173 | . 2 ⊢ (𝐴 = 𝐶 ∨ 𝐴 = 𝐴 ∨ 𝐴 = 𝐷) |
| 3 | eltpg 3688 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐴, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐴 ∨ 𝐴 = 𝐷))) | |
| 4 | 2, 3 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐴, 𝐷}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 980 = wceq 1373 ∈ wcel 2178 {ctp 3645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-tp 3651 |
| This theorem is referenced by: rngplusgg 13084 srngplusgd 13095 lmodplusgd 13113 ipsaddgd 13125 ipsvscad 13128 topgrpplusgd 13145 |
| Copyright terms: Public domain | W3C validator |