| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpid2g | GIF version | ||
| Description: Closed theorem form of tpid2 3780. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| tpid2g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐴, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | 3mix2i 1194 | . 2 ⊢ (𝐴 = 𝐶 ∨ 𝐴 = 𝐴 ∨ 𝐴 = 𝐷) |
| 3 | eltpg 3711 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐴, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐴 ∨ 𝐴 = 𝐷))) | |
| 4 | 2, 3 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐴, 𝐷}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 {ctp 3668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-tp 3674 |
| This theorem is referenced by: rngplusgg 13170 srngplusgd 13181 lmodplusgd 13199 ipsaddgd 13211 ipsvscad 13214 topgrpplusgd 13231 |
| Copyright terms: Public domain | W3C validator |