| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpid2g | GIF version | ||
| Description: Closed theorem form of tpid2 3746. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| tpid2g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐴, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | 3mix2i 1173 | . 2 ⊢ (𝐴 = 𝐶 ∨ 𝐴 = 𝐴 ∨ 𝐴 = 𝐷) |
| 3 | eltpg 3678 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐴, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐴 ∨ 𝐴 = 𝐷))) | |
| 4 | 2, 3 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐴, 𝐷}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 980 = wceq 1373 ∈ wcel 2176 {ctp 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-tp 3641 |
| This theorem is referenced by: rngplusgg 12969 srngplusgd 12980 lmodplusgd 12998 ipsaddgd 13010 ipsvscad 13013 topgrpplusgd 13030 |
| Copyright terms: Public domain | W3C validator |