ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgrpplusgd Unicode version

Theorem topgrpplusgd 12802
Description: The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
Hypotheses
Ref Expression
topgrpfn.w  |-  W  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }
topgrpfnd.b  |-  ( ph  ->  B  e.  V )
topgrpfnd.p  |-  ( ph  ->  .+  e.  W )
topgrpfnd.j  |-  ( ph  ->  J  e.  X )
Assertion
Ref Expression
topgrpplusgd  |-  ( ph  ->  .+  =  ( +g  `  W ) )

Proof of Theorem topgrpplusgd
StepHypRef Expression
1 plusgslid 12717 . 2  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
2 topgrpfn.w . . 3  |-  W  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }
3 topgrpfnd.b . . 3  |-  ( ph  ->  B  e.  V )
4 topgrpfnd.p . . 3  |-  ( ph  ->  .+  e.  W )
5 topgrpfnd.j . . 3  |-  ( ph  ->  J  e.  X )
62, 3, 4, 5topgrpstrd 12800 . 2  |-  ( ph  ->  W Struct  <. 1 ,  9
>. )
71simpri 113 . . . . 5  |-  ( +g  ` 
ndx )  e.  NN
8 opexg 4257 . . . . 5  |-  ( ( ( +g  `  ndx )  e.  NN  /\  .+  e.  W )  ->  <. ( +g  `  ndx ) , 
.+  >.  e.  _V )
97, 4, 8sylancr 414 . . . 4  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  .+  >.  e.  _V )
10 tpid2g 3732 . . . 4  |-  ( <.
( +g  `  ndx ) ,  .+  >.  e.  _V  -> 
<. ( +g  `  ndx ) ,  .+  >.  e.  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. } )
119, 10syl 14 . . 3  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  .+  >.  e.  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. } )
1211, 2eleqtrrdi 2287 . 2  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  .+  >.  e.  W
)
131, 6, 4, 12opelstrsl 12719 1  |-  ( ph  ->  .+  =  ( +g  `  W ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   {ctp 3620   <.cop 3621   ` cfv 5246   1c1 7863   NNcn 8972   9c9 9030   ndxcnx 12602  Slot cslot 12604   Basecbs 12605   +g cplusg 12682  TopSetcts 12688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-0id 7970  ax-rnegex 7971  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-inn 8973  df-2 9031  df-3 9032  df-4 9033  df-5 9034  df-6 9035  df-7 9036  df-8 9037  df-9 9038  df-n0 9231  df-z 9308  df-uz 9583  df-fz 10065  df-struct 12607  df-ndx 12608  df-slot 12609  df-base 12611  df-plusg 12695  df-tset 12701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator