ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srngplusgd Unicode version

Theorem srngplusgd 12122
Description: The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
srngstr.r  |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } )
srngstrd.b  |-  ( ph  ->  B  e.  V )
srngstrd.p  |-  ( ph  ->  .+  e.  W )
srngstrd.m  |-  ( ph  ->  .x.  e.  X )
srngstrd.s  |-  ( ph  ->  .*  e.  Y )
Assertion
Ref Expression
srngplusgd  |-  ( ph  ->  .+  =  ( +g  `  R ) )

Proof of Theorem srngplusgd
StepHypRef Expression
1 plusgslid 12093 . 2  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
2 srngstr.r . . 3  |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } )
3 srngstrd.b . . 3  |-  ( ph  ->  B  e.  V )
4 srngstrd.p . . 3  |-  ( ph  ->  .+  e.  W )
5 srngstrd.m . . 3  |-  ( ph  ->  .x.  e.  X )
6 srngstrd.s . . 3  |-  ( ph  ->  .*  e.  Y )
72, 3, 4, 5, 6srngstrd 12120 . 2  |-  ( ph  ->  R Struct  <. 1 ,  4
>. )
81simpri 112 . . . . 5  |-  ( +g  ` 
ndx )  e.  NN
9 opexg 4158 . . . . 5  |-  ( ( ( +g  `  ndx )  e.  NN  /\  .+  e.  W )  ->  <. ( +g  `  ndx ) , 
.+  >.  e.  _V )
108, 4, 9sylancr 411 . . . 4  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  .+  >.  e.  _V )
11 tpid2g 3645 . . . 4  |-  ( <.
( +g  `  ndx ) ,  .+  >.  e.  _V  -> 
<. ( +g  `  ndx ) ,  .+  >.  e.  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. } )
12 elun1 3248 . . . 4  |-  ( <.
( +g  `  ndx ) ,  .+  >.  e.  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  ->  <. ( +g  `  ndx ) , 
.+  >.  e.  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } ) )
1310, 11, 123syl 17 . . 3  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  .+  >.  e.  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } ) )
1413, 2eleqtrrdi 2234 . 2  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  .+  >.  e.  R
)
151, 7, 4, 14opelstrsl 12094 1  |-  ( ph  ->  .+  =  ( +g  `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481   _Vcvv 2689    u. cun 3074   {csn 3532   {ctp 3534   <.cop 3535   ` cfv 5131   1c1 7645   NNcn 8744   4c4 8797   ndxcnx 11995  Slot cslot 11997   Basecbs 11998   +g cplusg 12060   .rcmulr 12061   *rcstv 12062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-tp 3540  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-struct 12000  df-ndx 12001  df-slot 12002  df-base 12004  df-plusg 12073  df-mulr 12074  df-starv 12075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator