![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordtr1 | Unicode version |
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ordtr1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4410 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | trel 4135 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-uni 3837 df-tr 4129 df-iord 4398 |
This theorem is referenced by: ontr1 4421 ordwe 4609 dfsmo2 6342 smores2 6349 smoel 6355 tfr1onlemsucaccv 6396 tfr1onlembxssdm 6398 tfr1onlembfn 6399 tfr1onlemaccex 6403 tfr1onlemres 6404 tfrcllemsucaccv 6409 tfrcllembxssdm 6411 tfrcllembfn 6412 tfrcllemaccex 6416 tfrcllemres 6417 tfrcl 6419 ordiso2 7096 |
Copyright terms: Public domain | W3C validator |