| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtr1 | Unicode version | ||
| Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordtr1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4426 |
. 2
| |
| 2 | trel 4150 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-uni 3851 df-tr 4144 df-iord 4414 |
| This theorem is referenced by: ontr1 4437 ordwe 4625 dfsmo2 6375 smores2 6382 smoel 6388 tfr1onlemsucaccv 6429 tfr1onlembxssdm 6431 tfr1onlembfn 6432 tfr1onlemaccex 6436 tfr1onlemres 6437 tfrcllemsucaccv 6442 tfrcllembxssdm 6444 tfrcllembfn 6445 tfrcllemaccex 6449 tfrcllemres 6450 tfrcl 6452 ordiso2 7139 |
| Copyright terms: Public domain | W3C validator |