| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtr1 | Unicode version | ||
| Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordtr1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4469 |
. 2
| |
| 2 | trel 4189 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-uni 3889 df-tr 4183 df-iord 4457 |
| This theorem is referenced by: ontr1 4480 ordwe 4668 dfsmo2 6433 smores2 6440 smoel 6446 tfr1onlemsucaccv 6487 tfr1onlembxssdm 6489 tfr1onlembfn 6490 tfr1onlemaccex 6494 tfr1onlemres 6495 tfrcllemsucaccv 6500 tfrcllembxssdm 6502 tfrcllembfn 6503 tfrcllemaccex 6507 tfrcllemres 6508 tfrcl 6510 ordiso2 7202 |
| Copyright terms: Public domain | W3C validator |