| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtr1 | Unicode version | ||
| Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordtr1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4425 |
. 2
| |
| 2 | trel 4149 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-uni 3851 df-tr 4143 df-iord 4413 |
| This theorem is referenced by: ontr1 4436 ordwe 4624 dfsmo2 6373 smores2 6380 smoel 6386 tfr1onlemsucaccv 6427 tfr1onlembxssdm 6429 tfr1onlembfn 6430 tfr1onlemaccex 6434 tfr1onlemres 6435 tfrcllemsucaccv 6440 tfrcllembxssdm 6442 tfrcllembfn 6443 tfrcllemaccex 6447 tfrcllemres 6448 tfrcl 6450 ordiso2 7137 |
| Copyright terms: Public domain | W3C validator |