| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtr1 | Unicode version | ||
| Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordtr1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4443 |
. 2
| |
| 2 | trel 4165 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-uni 3865 df-tr 4159 df-iord 4431 |
| This theorem is referenced by: ontr1 4454 ordwe 4642 dfsmo2 6396 smores2 6403 smoel 6409 tfr1onlemsucaccv 6450 tfr1onlembxssdm 6452 tfr1onlembfn 6453 tfr1onlemaccex 6457 tfr1onlemres 6458 tfrcllemsucaccv 6463 tfrcllembxssdm 6465 tfrcllembfn 6466 tfrcllemaccex 6470 tfrcllemres 6471 tfrcl 6473 ordiso2 7163 |
| Copyright terms: Public domain | W3C validator |