ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr1 Unicode version

Theorem ordtr1 4390
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
ordtr1  |-  ( Ord 
C  ->  ( ( A  e.  B  /\  B  e.  C )  ->  A  e.  C ) )

Proof of Theorem ordtr1
StepHypRef Expression
1 ordtr 4380 . 2  |-  ( Ord 
C  ->  Tr  C
)
2 trel 4110 . 2  |-  ( Tr  C  ->  ( ( A  e.  B  /\  B  e.  C )  ->  A  e.  C ) )
31, 2syl 14 1  |-  ( Ord 
C  ->  ( ( A  e.  B  /\  B  e.  C )  ->  A  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   Tr wtr 4103   Ord word 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-tr 4104  df-iord 4368
This theorem is referenced by:  ontr1  4391  ordwe  4577  dfsmo2  6290  smores2  6297  smoel  6303  tfr1onlemsucaccv  6344  tfr1onlembxssdm  6346  tfr1onlembfn  6347  tfr1onlemaccex  6351  tfr1onlemres  6352  tfrcllemsucaccv  6357  tfrcllembxssdm  6359  tfrcllembfn  6360  tfrcllemaccex  6364  tfrcllemres  6365  tfrcl  6367  ordiso2  7036
  Copyright terms: Public domain W3C validator