ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneqri Unicode version

Theorem uneqri 3278
Description: Inference from membership to union. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
uneqri.1  |-  ( ( x  e.  A  \/  x  e.  B )  <->  x  e.  C )
Assertion
Ref Expression
uneqri  |-  ( A  u.  B )  =  C
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem uneqri
StepHypRef Expression
1 elun 3277 . . 3  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
2 uneqri.1 . . 3  |-  ( ( x  e.  A  \/  x  e.  B )  <->  x  e.  C )
31, 2bitri 184 . 2  |-  ( x  e.  ( A  u.  B )  <->  x  e.  C )
43eqriv 2174 1  |-  ( A  u.  B )  =  C
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148    u. cun 3128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134
This theorem is referenced by:  unidm  3279  uncom  3280  unass  3293  undi  3384  unab  3403  un0  3457
  Copyright terms: Public domain W3C validator