| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneqri | GIF version | ||
| Description: Inference from membership to union. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| uneqri | ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 3345 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 2 | uneqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
| 3 | 1, 2 | bitri 184 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐶) |
| 4 | 3 | eqriv 2226 | 1 ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: unidm 3347 uncom 3348 unass 3361 undi 3452 unab 3471 un0 3525 |
| Copyright terms: Public domain | W3C validator |