ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintabim GIF version

Theorem uniintabim 3907
Description: The union and the intersection of a class abstraction are equal if there is a unique satisfying value of 𝜑(𝑥). (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintabim (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})

Proof of Theorem uniintabim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3687 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 uniintsnr 3906 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → {𝑥𝜑} = {𝑥𝜑})
31, 2sylbi 121 1 (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wex 1503  ∃!weu 2042  {cab 2179  {csn 3618   cuni 3835   cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871
This theorem is referenced by:  iotaint  5228
  Copyright terms: Public domain W3C validator