| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniintabim | GIF version | ||
| Description: The union and the intersection of a class abstraction are equal if there is a unique satisfying value of 𝜑(𝑥). (Contributed by Jim Kingdon, 14-Aug-2018.) |
| Ref | Expression |
|---|---|
| uniintabim | ⊢ (∃!𝑥𝜑 → ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 3715 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 2 | uniintsnr 3938 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∃wex 1518 ∃!weu 2057 {cab 2195 {csn 3646 ∪ cuni 3867 ∩ cint 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-sn 3652 df-pr 3653 df-uni 3868 df-int 3903 |
| This theorem is referenced by: iotaint 5268 |
| Copyright terms: Public domain | W3C validator |