ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintabim GIF version

Theorem uniintabim 3939
Description: The union and the intersection of a class abstraction are equal if there is a unique satisfying value of 𝜑(𝑥). (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintabim (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})

Proof of Theorem uniintabim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3715 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 uniintsnr 3938 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → {𝑥𝜑} = {𝑥𝜑})
31, 2sylbi 121 1 (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wex 1518  ∃!weu 2057  {cab 2195  {csn 3646   cuni 3867   cint 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-sn 3652  df-pr 3653  df-uni 3868  df-int 3903
This theorem is referenced by:  iotaint  5268
  Copyright terms: Public domain W3C validator