| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > uniintabim | GIF version | ||
| Description: The union and the intersection of a class abstraction are equal if there is a unique satisfying value of 𝜑(𝑥). (Contributed by Jim Kingdon, 14-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| uniintabim | ⊢ (∃!𝑥𝜑 → ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | euabsn2 3691 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 2 | uniintsnr 3910 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∃wex 1506 ∃!weu 2045 {cab 2182 {csn 3622 ∪ cuni 3839 ∩ cint 3874 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 | 
| This theorem is referenced by: iotaint 5232 | 
| Copyright terms: Public domain | W3C validator |