![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniintabim | GIF version |
Description: The union and the intersection of a class abstraction are equal if there is a unique satisfying value of 𝜑(𝑥). (Contributed by Jim Kingdon, 14-Aug-2018.) |
Ref | Expression |
---|---|
uniintabim | ⊢ (∃!𝑥𝜑 → ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn2 3511 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
2 | uniintsnr 3724 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | sylbi 119 | 1 ⊢ (∃!𝑥𝜑 → ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∃wex 1426 ∃!weu 1948 {cab 2074 {csn 3446 ∪ cuni 3653 ∩ cint 3688 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-sn 3452 df-pr 3453 df-uni 3654 df-int 3689 |
This theorem is referenced by: iotaint 4993 |
Copyright terms: Public domain | W3C validator |