ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintabim GIF version

Theorem uniintabim 3924
Description: The union and the intersection of a class abstraction are equal if there is a unique satisfying value of 𝜑(𝑥). (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintabim (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})

Proof of Theorem uniintabim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3703 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
2 uniintsnr 3923 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → {𝑥𝜑} = {𝑥𝜑})
31, 2sylbi 121 1 (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wex 1516  ∃!weu 2055  {cab 2192  {csn 3634   cuni 3852   cint 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-sn 3640  df-pr 3641  df-uni 3853  df-int 3888
This theorem is referenced by:  iotaint  5250
  Copyright terms: Public domain W3C validator