ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unimax GIF version

Theorem unimax 3890
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unimax (𝐴𝐵 {𝑥𝐵𝑥𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unimax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssid 3217 . . 3 𝐴𝐴
2 sseq1 3220 . . . 4 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
32elrab3 2934 . . 3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝑥𝐴} ↔ 𝐴𝐴))
41, 3mpbiri 168 . 2 (𝐴𝐵𝐴 ∈ {𝑥𝐵𝑥𝐴})
5 sseq1 3220 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
65elrab 2933 . . . 4 (𝑦 ∈ {𝑥𝐵𝑥𝐴} ↔ (𝑦𝐵𝑦𝐴))
76simprbi 275 . . 3 (𝑦 ∈ {𝑥𝐵𝑥𝐴} → 𝑦𝐴)
87rgen 2560 . 2 𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐴
9 ssunieq 3889 . . 3 ((𝐴 ∈ {𝑥𝐵𝑥𝐴} ∧ ∀𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐴) → 𝐴 = {𝑥𝐵𝑥𝐴})
109eqcomd 2212 . 2 ((𝐴 ∈ {𝑥𝐵𝑥𝐴} ∧ ∀𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐴) → {𝑥𝐵𝑥𝐴} = 𝐴)
114, 8, 10sylancl 413 1 (𝐴𝐵 {𝑥𝐵𝑥𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  {crab 2489  wss 3170   cuni 3856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-v 2775  df-in 3176  df-ss 3183  df-uni 3857
This theorem is referenced by:  onuniss2  4568  lssuni  14200
  Copyright terms: Public domain W3C validator