![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unimax | GIF version |
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unimax | ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3177 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | sseq1 3180 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 2 | elrab3 2896 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ 𝐴 ⊆ 𝐴)) |
4 | 1, 3 | mpbiri 168 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}) |
5 | sseq1 3180 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
6 | 5 | elrab 2895 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ 𝐴)) |
7 | 6 | simprbi 275 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} → 𝑦 ⊆ 𝐴) |
8 | 7 | rgen 2530 | . 2 ⊢ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴 |
9 | ssunieq 3844 | . . 3 ⊢ ((𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) → 𝐴 = ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}) | |
10 | 9 | eqcomd 2183 | . 2 ⊢ ((𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
11 | 4, 8, 10 | sylancl 413 | 1 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 {crab 2459 ⊆ wss 3131 ∪ cuni 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rab 2464 df-v 2741 df-in 3137 df-ss 3144 df-uni 3812 |
This theorem is referenced by: onuniss2 4513 lssuni 13455 |
Copyright terms: Public domain | W3C validator |