ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unimax GIF version

Theorem unimax 3921
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unimax (𝐴𝐵 {𝑥𝐵𝑥𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unimax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssid 3244 . . 3 𝐴𝐴
2 sseq1 3247 . . . 4 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
32elrab3 2960 . . 3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝑥𝐴} ↔ 𝐴𝐴))
41, 3mpbiri 168 . 2 (𝐴𝐵𝐴 ∈ {𝑥𝐵𝑥𝐴})
5 sseq1 3247 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
65elrab 2959 . . . 4 (𝑦 ∈ {𝑥𝐵𝑥𝐴} ↔ (𝑦𝐵𝑦𝐴))
76simprbi 275 . . 3 (𝑦 ∈ {𝑥𝐵𝑥𝐴} → 𝑦𝐴)
87rgen 2583 . 2 𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐴
9 ssunieq 3920 . . 3 ((𝐴 ∈ {𝑥𝐵𝑥𝐴} ∧ ∀𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐴) → 𝐴 = {𝑥𝐵𝑥𝐴})
109eqcomd 2235 . 2 ((𝐴 ∈ {𝑥𝐵𝑥𝐴} ∧ ∀𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐴) → {𝑥𝐵𝑥𝐴} = 𝐴)
114, 8, 10sylancl 413 1 (𝐴𝐵 {𝑥𝐵𝑥𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  {crab 2512  wss 3197   cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888
This theorem is referenced by:  onuniss2  4603  lssuni  14321
  Copyright terms: Public domain W3C validator