![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrab3 | Unicode version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elrab3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | elrab 2917 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | baib 920 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 |
This theorem is referenced by: unimax 3870 undifexmid 4223 frind 4384 ordtriexmidlem2 4553 ordtriexmid 4554 ontriexmidim 4555 ordtri2orexmid 4556 onsucelsucexmid 4563 0elsucexmid 4598 ordpwsucexmid 4603 ordtri2or2exmid 4604 ontri2orexmidim 4605 canth 5872 acexmidlema 5910 acexmidlemb 5911 isnumi 7244 genpelvl 7574 genpelvu 7575 cauappcvgprlemladdru 7718 cauappcvgprlem1 7721 caucvgprlem1 7741 sup3exmid 8978 supinfneg 9663 infsupneg 9664 supminfex 9665 ublbneg 9681 negm 9683 hashinfuni 10851 infssuzex 12089 gcddvds 12103 dvdslegcd 12104 bezoutlemsup 12149 uzwodc 12177 lcmval 12204 dvdslcm 12210 isprm2lem 12257 |
Copyright terms: Public domain | W3C validator |