ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab3 Unicode version

Theorem elrab3 2960
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
Hypothesis
Ref Expression
elrab.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elrab3  |-  ( A  e.  B  ->  ( A  e.  { x  e.  B  |  ph }  <->  ps ) )
Distinct variable groups:    ps, x    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem elrab3
StepHypRef Expression
1 elrab.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21elrab 2959 . 2  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )
32baib 924 1  |-  ( A  e.  B  ->  ( A  e.  { x  e.  B  |  ph }  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801
This theorem is referenced by:  unimax  3922  undifexmid  4277  frind  4443  ordtriexmidlem2  4612  ordtriexmid  4613  ontriexmidim  4614  ordtri2orexmid  4615  onsucelsucexmid  4622  0elsucexmid  4657  ordpwsucexmid  4662  ordtri2or2exmid  4663  ontri2orexmidim  4664  canth  5952  acexmidlema  5992  acexmidlemb  5993  isnumi  7354  genpelvl  7699  genpelvu  7700  cauappcvgprlemladdru  7843  cauappcvgprlem1  7846  caucvgprlem1  7866  sup3exmid  9104  supinfneg  9790  infsupneg  9791  supminfex  9792  ublbneg  9808  negm  9810  infssuzex  10453  hashinfuni  10999  gcddvds  12484  dvdslegcd  12485  bezoutlemsup  12530  uzwodc  12558  lcmval  12585  dvdslcm  12591  isprm2lem  12638
  Copyright terms: Public domain W3C validator