Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrab3 | Unicode version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 |
Ref | Expression |
---|---|
elrab3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 | |
2 | 1 | elrab 2891 | . 2 |
3 | 2 | baib 919 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 wcel 2146 crab 2457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-v 2737 |
This theorem is referenced by: unimax 3839 undifexmid 4188 frind 4346 ordtriexmidlem2 4513 ordtriexmid 4514 ontriexmidim 4515 ordtri2orexmid 4516 onsucelsucexmid 4523 0elsucexmid 4558 ordpwsucexmid 4563 ordtri2or2exmid 4564 ontri2orexmidim 4565 canth 5819 acexmidlema 5856 acexmidlemb 5857 isnumi 7171 genpelvl 7486 genpelvu 7487 cauappcvgprlemladdru 7630 cauappcvgprlem1 7633 caucvgprlem1 7653 sup3exmid 8887 supinfneg 9568 infsupneg 9569 supminfex 9570 ublbneg 9586 negm 9588 hashinfuni 10725 infssuzex 11917 gcddvds 11931 dvdslegcd 11932 bezoutlemsup 11977 uzwodc 12005 lcmval 12030 dvdslcm 12036 isprm2lem 12083 |
Copyright terms: Public domain | W3C validator |