![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrab3 | Unicode version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elrab3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | elrab 2895 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | baib 919 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rab 2464 df-v 2741 |
This theorem is referenced by: unimax 3845 undifexmid 4195 frind 4354 ordtriexmidlem2 4521 ordtriexmid 4522 ontriexmidim 4523 ordtri2orexmid 4524 onsucelsucexmid 4531 0elsucexmid 4566 ordpwsucexmid 4571 ordtri2or2exmid 4572 ontri2orexmidim 4573 canth 5831 acexmidlema 5868 acexmidlemb 5869 isnumi 7183 genpelvl 7513 genpelvu 7514 cauappcvgprlemladdru 7657 cauappcvgprlem1 7660 caucvgprlem1 7680 sup3exmid 8916 supinfneg 9597 infsupneg 9598 supminfex 9599 ublbneg 9615 negm 9617 hashinfuni 10759 infssuzex 11952 gcddvds 11966 dvdslegcd 11967 bezoutlemsup 12012 uzwodc 12040 lcmval 12065 dvdslcm 12071 isprm2lem 12118 |
Copyright terms: Public domain | W3C validator |