| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrab3 | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 |
|
| Ref | Expression |
|---|---|
| elrab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 |
. . 3
| |
| 2 | 1 | elrab 2929 |
. 2
|
| 3 | 2 | baib 921 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 |
| This theorem is referenced by: unimax 3884 undifexmid 4237 frind 4399 ordtriexmidlem2 4568 ordtriexmid 4569 ontriexmidim 4570 ordtri2orexmid 4571 onsucelsucexmid 4578 0elsucexmid 4613 ordpwsucexmid 4618 ordtri2or2exmid 4619 ontri2orexmidim 4620 canth 5897 acexmidlema 5935 acexmidlemb 5936 isnumi 7289 genpelvl 7625 genpelvu 7626 cauappcvgprlemladdru 7769 cauappcvgprlem1 7772 caucvgprlem1 7792 sup3exmid 9030 supinfneg 9716 infsupneg 9717 supminfex 9718 ublbneg 9734 negm 9736 infssuzex 10376 hashinfuni 10922 gcddvds 12284 dvdslegcd 12285 bezoutlemsup 12330 uzwodc 12358 lcmval 12385 dvdslcm 12391 isprm2lem 12438 |
| Copyright terms: Public domain | W3C validator |