ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab3 Unicode version

Theorem elrab3 2921
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
Hypothesis
Ref Expression
elrab.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elrab3  |-  ( A  e.  B  ->  ( A  e.  { x  e.  B  |  ph }  <->  ps ) )
Distinct variable groups:    ps, x    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem elrab3
StepHypRef Expression
1 elrab.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21elrab 2920 . 2  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )
32baib 920 1  |-  ( A  e.  B  ->  ( A  e.  { x  e.  B  |  ph }  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765
This theorem is referenced by:  unimax  3873  undifexmid  4226  frind  4387  ordtriexmidlem2  4556  ordtriexmid  4557  ontriexmidim  4558  ordtri2orexmid  4559  onsucelsucexmid  4566  0elsucexmid  4601  ordpwsucexmid  4606  ordtri2or2exmid  4607  ontri2orexmidim  4608  canth  5875  acexmidlema  5913  acexmidlemb  5914  isnumi  7249  genpelvl  7579  genpelvu  7580  cauappcvgprlemladdru  7723  cauappcvgprlem1  7726  caucvgprlem1  7746  sup3exmid  8984  supinfneg  9669  infsupneg  9670  supminfex  9671  ublbneg  9687  negm  9689  infssuzex  10323  hashinfuni  10869  gcddvds  12130  dvdslegcd  12131  bezoutlemsup  12176  uzwodc  12204  lcmval  12231  dvdslcm  12237  isprm2lem  12284
  Copyright terms: Public domain W3C validator