ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab3 Unicode version

Theorem elrab3 2896
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
Hypothesis
Ref Expression
elrab.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elrab3  |-  ( A  e.  B  ->  ( A  e.  { x  e.  B  |  ph }  <->  ps ) )
Distinct variable groups:    ps, x    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem elrab3
StepHypRef Expression
1 elrab.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21elrab 2895 . 2  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )
32baib 919 1  |-  ( A  e.  B  ->  ( A  e.  { x  e.  B  |  ph }  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   {crab 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2741
This theorem is referenced by:  unimax  3845  undifexmid  4195  frind  4354  ordtriexmidlem2  4521  ordtriexmid  4522  ontriexmidim  4523  ordtri2orexmid  4524  onsucelsucexmid  4531  0elsucexmid  4566  ordpwsucexmid  4571  ordtri2or2exmid  4572  ontri2orexmidim  4573  canth  5831  acexmidlema  5868  acexmidlemb  5869  isnumi  7183  genpelvl  7513  genpelvu  7514  cauappcvgprlemladdru  7657  cauappcvgprlem1  7660  caucvgprlem1  7680  sup3exmid  8916  supinfneg  9597  infsupneg  9598  supminfex  9599  ublbneg  9615  negm  9617  hashinfuni  10759  infssuzex  11952  gcddvds  11966  dvdslegcd  11967  bezoutlemsup  12012  uzwodc  12040  lcmval  12065  dvdslcm  12071  isprm2lem  12118
  Copyright terms: Public domain W3C validator