| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrab3 | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 |
|
| Ref | Expression |
|---|---|
| elrab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 |
. . 3
| |
| 2 | 1 | elrab 2936 |
. 2
|
| 3 | 2 | baib 921 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 |
| This theorem is referenced by: unimax 3898 undifexmid 4253 frind 4417 ordtriexmidlem2 4586 ordtriexmid 4587 ontriexmidim 4588 ordtri2orexmid 4589 onsucelsucexmid 4596 0elsucexmid 4631 ordpwsucexmid 4636 ordtri2or2exmid 4637 ontri2orexmidim 4638 canth 5920 acexmidlema 5958 acexmidlemb 5959 isnumi 7315 genpelvl 7660 genpelvu 7661 cauappcvgprlemladdru 7804 cauappcvgprlem1 7807 caucvgprlem1 7827 sup3exmid 9065 supinfneg 9751 infsupneg 9752 supminfex 9753 ublbneg 9769 negm 9771 infssuzex 10413 hashinfuni 10959 gcddvds 12399 dvdslegcd 12400 bezoutlemsup 12445 uzwodc 12473 lcmval 12500 dvdslcm 12506 isprm2lem 12553 |
| Copyright terms: Public domain | W3C validator |