| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrab3 | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 |
|
| Ref | Expression |
|---|---|
| elrab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 |
. . 3
| |
| 2 | 1 | elrab 2959 |
. 2
|
| 3 | 2 | baib 924 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 |
| This theorem is referenced by: unimax 3922 undifexmid 4277 frind 4443 ordtriexmidlem2 4612 ordtriexmid 4613 ontriexmidim 4614 ordtri2orexmid 4615 onsucelsucexmid 4622 0elsucexmid 4657 ordpwsucexmid 4662 ordtri2or2exmid 4663 ontri2orexmidim 4664 canth 5952 acexmidlema 5992 acexmidlemb 5993 isnumi 7354 genpelvl 7699 genpelvu 7700 cauappcvgprlemladdru 7843 cauappcvgprlem1 7846 caucvgprlem1 7866 sup3exmid 9104 supinfneg 9790 infsupneg 9791 supminfex 9792 ublbneg 9808 negm 9810 infssuzex 10453 hashinfuni 10999 gcddvds 12484 dvdslegcd 12485 bezoutlemsup 12530 uzwodc 12558 lcmval 12585 dvdslcm 12591 isprm2lem 12638 |
| Copyright terms: Public domain | W3C validator |