| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrab3 | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 |
|
| Ref | Expression |
|---|---|
| elrab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 |
. . 3
| |
| 2 | 1 | elrab 2929 |
. 2
|
| 3 | 2 | baib 921 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 |
| This theorem is referenced by: unimax 3884 undifexmid 4238 frind 4400 ordtriexmidlem2 4569 ordtriexmid 4570 ontriexmidim 4571 ordtri2orexmid 4572 onsucelsucexmid 4579 0elsucexmid 4614 ordpwsucexmid 4619 ordtri2or2exmid 4620 ontri2orexmidim 4621 canth 5899 acexmidlema 5937 acexmidlemb 5938 isnumi 7291 genpelvl 7627 genpelvu 7628 cauappcvgprlemladdru 7771 cauappcvgprlem1 7774 caucvgprlem1 7794 sup3exmid 9032 supinfneg 9718 infsupneg 9719 supminfex 9720 ublbneg 9736 negm 9738 infssuzex 10378 hashinfuni 10924 gcddvds 12317 dvdslegcd 12318 bezoutlemsup 12363 uzwodc 12391 lcmval 12418 dvdslcm 12424 isprm2lem 12471 |
| Copyright terms: Public domain | W3C validator |