ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpexg Unicode version

Theorem tpexg 4479
Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.)
Assertion
Ref Expression
tpexg  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  { A ,  B ,  C }  e.  _V )

Proof of Theorem tpexg
StepHypRef Expression
1 df-tp 3630 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
2 prexg 4244 . . . . 5  |-  ( ( A  e.  U  /\  B  e.  V )  ->  { A ,  B }  e.  _V )
3 snexg 4217 . . . . 5  |-  ( C  e.  W  ->  { C }  e.  _V )
42, 3anim12i 338 . . . 4  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  C  e.  W )  ->  ( { A ,  B }  e.  _V  /\  { C }  e.  _V )
)
543impa 1196 . . 3  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( { A ,  B }  e.  _V  /\ 
{ C }  e.  _V ) )
6 unexg 4478 . . 3  |-  ( ( { A ,  B }  e.  _V  /\  { C }  e.  _V )  ->  ( { A ,  B }  u.  { C } )  e.  _V )
75, 6syl 14 . 2  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( { A ,  B }  u.  { C } )  e.  _V )
81, 7eqeltrid 2283 1  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  { A ,  B ,  C }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167   _Vcvv 2763    u. cun 3155   {csn 3622   {cpr 3623   {ctp 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-uni 3840
This theorem is referenced by:  prdsex  12940  imasex  12948  imasival  12949  imasbas  12950  imasplusg  12951  ring1  13615  psrval  14220  fnpsr  14221
  Copyright terms: Public domain W3C validator