| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpexg | Unicode version | ||
| Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| tpexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3630 |
. 2
| |
| 2 | prexg 4244 |
. . . . 5
| |
| 3 | snexg 4217 |
. . . . 5
| |
| 4 | 2, 3 | anim12i 338 |
. . . 4
|
| 5 | 4 | 3impa 1196 |
. . 3
|
| 6 | unexg 4478 |
. . 3
| |
| 7 | 5, 6 | syl 14 |
. 2
|
| 8 | 1, 7 | eqeltrid 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-uni 3840 |
| This theorem is referenced by: prdsex 12940 imasex 12948 imasival 12949 imasbas 12950 imasplusg 12951 ring1 13615 psrval 14220 fnpsr 14221 |
| Copyright terms: Public domain | W3C validator |