ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpexg Unicode version

Theorem tpexg 4444
Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.)
Assertion
Ref Expression
tpexg  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  { A ,  B ,  C }  e.  _V )

Proof of Theorem tpexg
StepHypRef Expression
1 df-tp 3600 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
2 prexg 4211 . . . . 5  |-  ( ( A  e.  U  /\  B  e.  V )  ->  { A ,  B }  e.  _V )
3 snexg 4184 . . . . 5  |-  ( C  e.  W  ->  { C }  e.  _V )
42, 3anim12i 338 . . . 4  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  C  e.  W )  ->  ( { A ,  B }  e.  _V  /\  { C }  e.  _V )
)
543impa 1194 . . 3  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( { A ,  B }  e.  _V  /\ 
{ C }  e.  _V ) )
6 unexg 4443 . . 3  |-  ( ( { A ,  B }  e.  _V  /\  { C }  e.  _V )  ->  ( { A ,  B }  u.  { C } )  e.  _V )
75, 6syl 14 . 2  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  ( { A ,  B }  u.  { C } )  e.  _V )
81, 7eqeltrid 2264 1  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  ->  { A ,  B ,  C }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    e. wcel 2148   _Vcvv 2737    u. cun 3127   {csn 3592   {cpr 3593   {ctp 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-tp 3600  df-uni 3810
This theorem is referenced by:  imasex  12708  imasival  12709  imasbas  12710  imasplusg  12711  ring1  13189
  Copyright terms: Public domain W3C validator