| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisng | Unicode version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| unisng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3677 |
. . . 4
| |
| 2 | 1 | unieqd 3898 |
. . 3
|
| 3 | id 19 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2244 |
. 2
|
| 5 | vex 2802 |
. . 3
| |
| 6 | 5 | unisn 3903 |
. 2
|
| 7 | 4, 6 | vtoclg 2861 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3888 |
| This theorem is referenced by: dfnfc2 3905 unisucg 4504 unisn3 4535 opswapg 5214 funfvdm 5696 en2other2 7370 lspuni0 14382 lss0v 14388 |
| Copyright terms: Public domain | W3C validator |