| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > unisng | Unicode version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) | 
| Ref | Expression | 
|---|---|
| unisng | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sneq 3633 | 
. . . 4
 | |
| 2 | 1 | unieqd 3850 | 
. . 3
 | 
| 3 | id 19 | 
. . 3
 | |
| 4 | 2, 3 | eqeq12d 2211 | 
. 2
 | 
| 5 | vex 2766 | 
. . 3
 | |
| 6 | 5 | unisn 3855 | 
. 2
 | 
| 7 | 4, 6 | vtoclg 2824 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 | 
| This theorem is referenced by: dfnfc2 3857 unisucg 4449 unisn3 4480 opswapg 5156 funfvdm 5624 en2other2 7263 lspuni0 13980 lss0v 13986 | 
| Copyright terms: Public domain | W3C validator |