ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisng Unicode version

Theorem unisng 3866
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unisng  |-  ( A  e.  V  ->  U. { A }  =  A
)

Proof of Theorem unisng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3643 . . . 4  |-  ( x  =  A  ->  { x }  =  { A } )
21unieqd 3860 . . 3  |-  ( x  =  A  ->  U. {
x }  =  U. { A } )
3 id 19 . . 3  |-  ( x  =  A  ->  x  =  A )
42, 3eqeq12d 2219 . 2  |-  ( x  =  A  ->  ( U. { x }  =  x 
<-> 
U. { A }  =  A ) )
5 vex 2774 . . 3  |-  x  e. 
_V
65unisn 3865 . 2  |-  U. {
x }  =  x
74, 6vtoclg 2832 1  |-  ( A  e.  V  ->  U. { A }  =  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   {csn 3632   U.cuni 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-uni 3850
This theorem is referenced by:  dfnfc2  3867  unisucg  4460  unisn3  4491  opswapg  5168  funfvdm  5641  en2other2  7303  lspuni0  14157  lss0v  14163
  Copyright terms: Public domain W3C validator