ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisng Unicode version

Theorem unisng 3881
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unisng  |-  ( A  e.  V  ->  U. { A }  =  A
)

Proof of Theorem unisng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3654 . . . 4  |-  ( x  =  A  ->  { x }  =  { A } )
21unieqd 3875 . . 3  |-  ( x  =  A  ->  U. {
x }  =  U. { A } )
3 id 19 . . 3  |-  ( x  =  A  ->  x  =  A )
42, 3eqeq12d 2222 . 2  |-  ( x  =  A  ->  ( U. { x }  =  x 
<-> 
U. { A }  =  A ) )
5 vex 2779 . . 3  |-  x  e. 
_V
65unisn 3880 . 2  |-  U. {
x }  =  x
74, 6vtoclg 2838 1  |-  ( A  e.  V  ->  U. { A }  =  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   {csn 3643   U.cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-uni 3865
This theorem is referenced by:  dfnfc2  3882  unisucg  4479  unisn3  4510  opswapg  5188  funfvdm  5665  en2other2  7335  lspuni0  14301  lss0v  14307
  Copyright terms: Public domain W3C validator