ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisn3 GIF version

Theorem unisn3 4480
Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.)
Assertion
Ref Expression
unisn3 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unisn3
StepHypRef Expression
1 rabsn 3689 . . 3 (𝐴𝐵 → {𝑥𝐵𝑥 = 𝐴} = {𝐴})
21unieqd 3850 . 2 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = {𝐴})
3 unisng 3856 . 2 (𝐴𝐵 {𝐴} = 𝐴)
42, 3eqtrd 2229 1 (𝐴𝐵 {𝑥𝐵𝑥 = 𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {crab 2479  {csn 3622   cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator