Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unisn3 | GIF version |
Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.) |
Ref | Expression |
---|---|
unisn3 | ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabsn 3650 | . . 3 ⊢ (𝐴 ∈ 𝐵 → {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = {𝐴}) | |
2 | 1 | unieqd 3807 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = ∪ {𝐴}) |
3 | unisng 3813 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝐴} = 𝐴) | |
4 | 2, 3 | eqtrd 2203 | 1 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 {crab 2452 {csn 3583 ∪ cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |