| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > unisn3 | GIF version | ||
| Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.) | 
| Ref | Expression | 
|---|---|
| unisn3 | ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rabsn 3689 | . . 3 ⊢ (𝐴 ∈ 𝐵 → {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = {𝐴}) | |
| 2 | 1 | unieqd 3850 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = ∪ {𝐴}) | 
| 3 | unisng 3856 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝐴} = 𝐴) | |
| 4 | 2, 3 | eqtrd 2229 | 1 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {crab 2479 {csn 3622 ∪ cuni 3839 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |