ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unss2 GIF version

Theorem unss2 3298
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem unss2
StepHypRef Expression
1 unss1 3296 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 uncom 3271 . 2 (𝐶𝐴) = (𝐴𝐶)
3 uncom 3271 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33sstr4g 3190 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  cun 3119  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134
This theorem is referenced by:  unss12  3299  difdif2ss  3384  difdifdirss  3499  ord3ex  4176  rdgss  6362  xpider  6584
  Copyright terms: Public domain W3C validator