ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssad Unicode version

Theorem unssad 3354
Description: If  ( A  u.  B ) is contained in  C, so is  A. One-way deduction form of unss 3351. Partial converse of unssd 3353. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unssad.1  |-  ( ph  ->  ( A  u.  B
)  C_  C )
Assertion
Ref Expression
unssad  |-  ( ph  ->  A  C_  C )

Proof of Theorem unssad
StepHypRef Expression
1 unssad.1 . . 3  |-  ( ph  ->  ( A  u.  B
)  C_  C )
2 unss 3351 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)
31, 2sylibr 134 . 2  |-  ( ph  ->  ( A  C_  C  /\  B  C_  C ) )
43simpld 112 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    u. cun 3168    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183
This theorem is referenced by:  ersym  6650  findcard2d  7009  findcard2sd  7010  diffifi  7012  sumsplitdc  11828  fsumabs  11861  fsumiun  11873
  Copyright terms: Public domain W3C validator