ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssd Unicode version

Theorem unssd 3357
Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
unssd.1  |-  ( ph  ->  A  C_  C )
unssd.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
unssd  |-  ( ph  ->  ( A  u.  B
)  C_  C )

Proof of Theorem unssd
StepHypRef Expression
1 unssd.1 . 2  |-  ( ph  ->  A  C_  C )
2 unssd.2 . 2  |-  ( ph  ->  B  C_  C )
3 unss 3355 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)
43biimpi 120 . 2  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( A  u.  B
)  C_  C )
51, 2, 4syl2anc 411 1  |-  ( ph  ->  ( A  u.  B
)  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    u. cun 3172    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187
This theorem is referenced by:  tpssi  3813  casef  7216  un0addcl  9363  un0mulcl  9364  fzosplit  10336  fzouzsplit  10338  ccatrn  11103  4sqlem11  12839  4sqlem19  12847  exmidunben  12912  strleund  13050  lsptpcl  14271  lspun  14279  fsumcncntop  15154  plyf  15324  elplyr  15327  elplyd  15328  ply1term  15330  plyaddlem  15336  plymullem  15337  plycolemc  15345  plycjlemc  15347  plycj  15348  plycn  15349  dvply2g  15353  perfectlem2  15587  bj-charfun  15942  bj-omtrans  16091
  Copyright terms: Public domain W3C validator