ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssd Unicode version

Theorem unssd 3349
Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
unssd.1  |-  ( ph  ->  A  C_  C )
unssd.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
unssd  |-  ( ph  ->  ( A  u.  B
)  C_  C )

Proof of Theorem unssd
StepHypRef Expression
1 unssd.1 . 2  |-  ( ph  ->  A  C_  C )
2 unssd.2 . 2  |-  ( ph  ->  B  C_  C )
3 unss 3347 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)
43biimpi 120 . 2  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( A  u.  B
)  C_  C )
51, 2, 4syl2anc 411 1  |-  ( ph  ->  ( A  u.  B
)  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    u. cun 3164    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179
This theorem is referenced by:  tpssi  3800  casef  7190  un0addcl  9328  un0mulcl  9329  fzosplit  10301  fzouzsplit  10303  ccatrn  11065  4sqlem11  12724  4sqlem19  12732  exmidunben  12797  strleund  12935  lsptpcl  14156  lspun  14164  fsumcncntop  15039  plyf  15209  elplyr  15212  elplyd  15213  ply1term  15215  plyaddlem  15221  plymullem  15222  plycolemc  15230  plycjlemc  15232  plycj  15233  plycn  15234  dvply2g  15238  perfectlem2  15472  bj-charfun  15747  bj-omtrans  15896
  Copyright terms: Public domain W3C validator