ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssd Unicode version

Theorem unssd 3283
Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
unssd.1  |-  ( ph  ->  A  C_  C )
unssd.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
unssd  |-  ( ph  ->  ( A  u.  B
)  C_  C )

Proof of Theorem unssd
StepHypRef Expression
1 unssd.1 . 2  |-  ( ph  ->  A  C_  C )
2 unssd.2 . 2  |-  ( ph  ->  B  C_  C )
3 unss 3281 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)
43biimpi 119 . 2  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( A  u.  B
)  C_  C )
51, 2, 4syl2anc 409 1  |-  ( ph  ->  ( A  u.  B
)  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    u. cun 3100    C_ wss 3102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115
This theorem is referenced by:  tpssi  3722  casef  7022  un0addcl  9106  un0mulcl  9107  fzosplit  10058  fzouzsplit  10060  exmidunben  12127  strleund  12238  fsumcncntop  12916  bj-charfun  13341  bj-omtrans  13490
  Copyright terms: Public domain W3C validator