| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unssd | Unicode version | ||
| Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| unssd.1 |
|
| unssd.2 |
|
| Ref | Expression |
|---|---|
| unssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssd.1 |
. 2
| |
| 2 | unssd.2 |
. 2
| |
| 3 | unss 3347 |
. . 3
| |
| 4 | 3 | biimpi 120 |
. 2
|
| 5 | 1, 2, 4 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 |
| This theorem is referenced by: tpssi 3800 casef 7192 un0addcl 9330 un0mulcl 9331 fzosplit 10303 fzouzsplit 10305 ccatrn 11068 4sqlem11 12757 4sqlem19 12765 exmidunben 12830 strleund 12968 lsptpcl 14189 lspun 14197 fsumcncntop 15072 plyf 15242 elplyr 15245 elplyd 15246 ply1term 15248 plyaddlem 15254 plymullem 15255 plycolemc 15263 plycjlemc 15265 plycj 15266 plycn 15267 dvply2g 15271 perfectlem2 15505 bj-charfun 15780 bj-omtrans 15929 |
| Copyright terms: Public domain | W3C validator |