| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unssd | Unicode version | ||
| Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| unssd.1 |
|
| unssd.2 |
|
| Ref | Expression |
|---|---|
| unssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssd.1 |
. 2
| |
| 2 | unssd.2 |
. 2
| |
| 3 | unss 3355 |
. . 3
| |
| 4 | 3 | biimpi 120 |
. 2
|
| 5 | 1, 2, 4 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 |
| This theorem is referenced by: tpssi 3813 casef 7216 un0addcl 9363 un0mulcl 9364 fzosplit 10336 fzouzsplit 10338 ccatrn 11103 4sqlem11 12839 4sqlem19 12847 exmidunben 12912 strleund 13050 lsptpcl 14271 lspun 14279 fsumcncntop 15154 plyf 15324 elplyr 15327 elplyd 15328 ply1term 15330 plyaddlem 15336 plymullem 15337 plycolemc 15345 plycjlemc 15347 plycj 15348 plycn 15349 dvply2g 15353 perfectlem2 15587 bj-charfun 15942 bj-omtrans 16091 |
| Copyright terms: Public domain | W3C validator |