ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssd Unicode version

Theorem unssd 3336
Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
unssd.1  |-  ( ph  ->  A  C_  C )
unssd.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
unssd  |-  ( ph  ->  ( A  u.  B
)  C_  C )

Proof of Theorem unssd
StepHypRef Expression
1 unssd.1 . 2  |-  ( ph  ->  A  C_  C )
2 unssd.2 . 2  |-  ( ph  ->  B  C_  C )
3 unss 3334 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)
43biimpi 120 . 2  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( A  u.  B
)  C_  C )
51, 2, 4syl2anc 411 1  |-  ( ph  ->  ( A  u.  B
)  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    u. cun 3152    C_ wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167
This theorem is referenced by:  tpssi  3786  casef  7149  un0addcl  9276  un0mulcl  9277  fzosplit  10247  fzouzsplit  10249  4sqlem11  12542  4sqlem19  12550  exmidunben  12586  strleund  12724  lsptpcl  13893  lspun  13901  fsumcncntop  14746  plyf  14916  elplyr  14919  elplyd  14920  ply1term  14922  plyaddlem  14928  plymullem  14929  plycolemc  14936  plycjlemc  14938  plycj  14939  plycn  14940  bj-charfun  15369  bj-omtrans  15518
  Copyright terms: Public domain W3C validator