| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unssd | Unicode version | ||
| Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| unssd.1 |
|
| unssd.2 |
|
| Ref | Expression |
|---|---|
| unssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssd.1 |
. 2
| |
| 2 | unssd.2 |
. 2
| |
| 3 | unss 3378 |
. . 3
| |
| 4 | 3 | biimpi 120 |
. 2
|
| 5 | 1, 2, 4 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: tpssi 3837 casef 7255 un0addcl 9402 un0mulcl 9403 fzosplit 10375 fzouzsplit 10377 ccatrn 11144 4sqlem11 12924 4sqlem19 12932 exmidunben 12997 strleund 13136 lsptpcl 14358 lspun 14366 fsumcncntop 15241 plyf 15411 elplyr 15414 elplyd 15415 ply1term 15417 plyaddlem 15423 plymullem 15424 plycolemc 15432 plycjlemc 15434 plycj 15435 plycn 15436 dvply2g 15440 perfectlem2 15674 bj-charfun 16170 bj-omtrans 16319 |
| Copyright terms: Public domain | W3C validator |