Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unssd | Unicode version |
Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
unssd.1 | |
unssd.2 |
Ref | Expression |
---|---|
unssd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssd.1 | . 2 | |
2 | unssd.2 | . 2 | |
3 | unss 3295 | . . 3 | |
4 | 3 | biimpi 119 | . 2 |
5 | 1, 2, 4 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 cun 3113 wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 |
This theorem is referenced by: tpssi 3738 casef 7049 un0addcl 9143 un0mulcl 9144 fzosplit 10108 fzouzsplit 10110 exmidunben 12355 strleund 12478 fsumcncntop 13156 bj-charfun 13649 bj-omtrans 13798 |
Copyright terms: Public domain | W3C validator |