| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unssd | Unicode version | ||
| Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| unssd.1 |
|
| unssd.2 |
|
| Ref | Expression |
|---|---|
| unssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssd.1 |
. 2
| |
| 2 | unssd.2 |
. 2
| |
| 3 | unss 3347 |
. . 3
| |
| 4 | 3 | biimpi 120 |
. 2
|
| 5 | 1, 2, 4 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 |
| This theorem is referenced by: tpssi 3800 casef 7190 un0addcl 9328 un0mulcl 9329 fzosplit 10301 fzouzsplit 10303 ccatrn 11065 4sqlem11 12724 4sqlem19 12732 exmidunben 12797 strleund 12935 lsptpcl 14156 lspun 14164 fsumcncntop 15039 plyf 15209 elplyr 15212 elplyd 15213 ply1term 15215 plyaddlem 15221 plymullem 15222 plycolemc 15230 plycjlemc 15232 plycj 15233 plycn 15234 dvply2g 15238 perfectlem2 15472 bj-charfun 15747 bj-omtrans 15896 |
| Copyright terms: Public domain | W3C validator |