Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ssz | Unicode version |
Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0ssz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9111 | . 2 | |
2 | nnssz 9204 | . . 3 | |
3 | 0z 9198 | . . . 4 | |
4 | c0ex 7889 | . . . . 5 | |
5 | 4 | snss 3701 | . . . 4 |
6 | 3, 5 | mpbi 144 | . . 3 |
7 | 2, 6 | unssi 3296 | . 2 |
8 | 1, 7 | eqsstri 3173 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 cun 3113 wss 3115 csn 3575 cc0 7749 cn 8853 cn0 9110 cz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 |
This theorem is referenced by: nn0z 9207 nn0zi 9209 nn0zd 9307 nn0ssq 9562 oddnn02np1 11813 evennn02n 11815 eulerthlemrprm 12157 eulerthlema 12158 eulerthlemh 12159 eulerthlemth 12160 pcprecl 12217 pcprendvds 12218 pcpremul 12221 |
Copyright terms: Public domain | W3C validator |