ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssz Unicode version

Theorem nn0ssz 9273
Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0ssz  |-  NN0  C_  ZZ

Proof of Theorem nn0ssz
StepHypRef Expression
1 df-n0 9179 . 2  |-  NN0  =  ( NN  u.  { 0 } )
2 nnssz 9272 . . 3  |-  NN  C_  ZZ
3 0z 9266 . . . 4  |-  0  e.  ZZ
4 c0ex 7953 . . . . 5  |-  0  e.  _V
54snss 3729 . . . 4  |-  ( 0  e.  ZZ  <->  { 0 }  C_  ZZ )
63, 5mpbi 145 . . 3  |-  { 0 }  C_  ZZ
72, 6unssi 3312 . 2  |-  ( NN  u.  { 0 } )  C_  ZZ
81, 7eqsstri 3189 1  |-  NN0  C_  ZZ
Colors of variables: wff set class
Syntax hints:    e. wcel 2148    u. cun 3129    C_ wss 3131   {csn 3594   0cc0 7813   NNcn 8921   NN0cn0 9178   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by:  nn0z  9275  nn0zi  9277  nn0zd  9375  nn0ssq  9630  oddnn02np1  11887  evennn02n  11889  eulerthlemrprm  12231  eulerthlema  12232  eulerthlemh  12233  eulerthlemth  12234  pcprecl  12291  pcprendvds  12292  pcpremul  12295
  Copyright terms: Public domain W3C validator