ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssz Unicode version

Theorem nn0ssz 9389
Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0ssz  |-  NN0  C_  ZZ

Proof of Theorem nn0ssz
StepHypRef Expression
1 df-n0 9295 . 2  |-  NN0  =  ( NN  u.  { 0 } )
2 nnssz 9388 . . 3  |-  NN  C_  ZZ
3 0z 9382 . . . 4  |-  0  e.  ZZ
4 c0ex 8065 . . . . 5  |-  0  e.  _V
54snss 3767 . . . 4  |-  ( 0  e.  ZZ  <->  { 0 }  C_  ZZ )
63, 5mpbi 145 . . 3  |-  { 0 }  C_  ZZ
72, 6unssi 3347 . 2  |-  ( NN  u.  { 0 } )  C_  ZZ
81, 7eqsstri 3224 1  |-  NN0  C_  ZZ
Colors of variables: wff set class
Syntax hints:    e. wcel 2175    u. cun 3163    C_ wss 3165   {csn 3632   0cc0 7924   NNcn 9035   NN0cn0 9294   ZZcz 9371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372
This theorem is referenced by:  nn0z  9391  nn0zi  9393  nn0zd  9492  nn0ssq  9748  oddnn02np1  12162  evennn02n  12164  eulerthlemrprm  12522  eulerthlema  12523  eulerthlemh  12524  eulerthlemth  12525  pcprecl  12583  pcprendvds  12584  pcpremul  12587
  Copyright terms: Public domain W3C validator