ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssz Unicode version

Theorem nn0ssz 9168
Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0ssz  |-  NN0  C_  ZZ

Proof of Theorem nn0ssz
StepHypRef Expression
1 df-n0 9074 . 2  |-  NN0  =  ( NN  u.  { 0 } )
2 nnssz 9167 . . 3  |-  NN  C_  ZZ
3 0z 9161 . . . 4  |-  0  e.  ZZ
4 c0ex 7855 . . . . 5  |-  0  e.  _V
54snss 3685 . . . 4  |-  ( 0  e.  ZZ  <->  { 0 }  C_  ZZ )
63, 5mpbi 144 . . 3  |-  { 0 }  C_  ZZ
72, 6unssi 3282 . 2  |-  ( NN  u.  { 0 } )  C_  ZZ
81, 7eqsstri 3160 1  |-  NN0  C_  ZZ
Colors of variables: wff set class
Syntax hints:    e. wcel 2128    u. cun 3100    C_ wss 3102   {csn 3560   0cc0 7715   NNcn 8816   NN0cn0 9073   ZZcz 9150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-addass 7817  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-0id 7823  ax-rnegex 7824  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-ltadd 7831
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-inn 8817  df-n0 9074  df-z 9151
This theorem is referenced by:  nn0z  9170  nn0zi  9172  nn0zd  9267  nn0ssq  9519  oddnn02np1  11752  evennn02n  11754  eulerthlemrprm  12081  eulerthlema  12082  eulerthlemh  12083  eulerthlemth  12084
  Copyright terms: Public domain W3C validator