Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ssz | Unicode version |
Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0ssz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9074 | . 2 | |
2 | nnssz 9167 | . . 3 | |
3 | 0z 9161 | . . . 4 | |
4 | c0ex 7855 | . . . . 5 | |
5 | 4 | snss 3685 | . . . 4 |
6 | 3, 5 | mpbi 144 | . . 3 |
7 | 2, 6 | unssi 3282 | . 2 |
8 | 1, 7 | eqsstri 3160 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 cun 3100 wss 3102 csn 3560 cc0 7715 cn 8816 cn0 9073 cz 9150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-inn 8817 df-n0 9074 df-z 9151 |
This theorem is referenced by: nn0z 9170 nn0zi 9172 nn0zd 9267 nn0ssq 9519 oddnn02np1 11752 evennn02n 11754 eulerthlemrprm 12081 eulerthlema 12082 eulerthlemh 12083 eulerthlemth 12084 |
Copyright terms: Public domain | W3C validator |