Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caserel | Unicode version |
Description: The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
caserel | case ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-case 7049 | . 2 case inl inr | |
2 | cocnvss 5129 | . . . 4 inl inl inl | |
3 | inlresf1 7026 | . . . . . 6 inl ⊔ | |
4 | f1rn 5394 | . . . . . 6 inl ⊔ inl ⊔ | |
5 | 3, 4 | ax-mp 5 | . . . . 5 inl ⊔ |
6 | resss 4908 | . . . . . . 7 inl | |
7 | rnss 4834 | . . . . . . 7 inl inl | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 inl |
9 | ssun1 3285 | . . . . . 6 | |
10 | 8, 9 | sstri 3151 | . . . . 5 inl |
11 | xpss12 4711 | . . . . 5 inl ⊔ inl inl inl ⊔ | |
12 | 5, 10, 11 | mp2an 423 | . . . 4 inl inl ⊔ |
13 | 2, 12 | sstri 3151 | . . 3 inl ⊔ |
14 | cocnvss 5129 | . . . 4 inr inr inr | |
15 | inrresf1 7027 | . . . . . 6 inr ⊔ | |
16 | f1rn 5394 | . . . . . 6 inr ⊔ inr ⊔ | |
17 | 15, 16 | ax-mp 5 | . . . . 5 inr ⊔ |
18 | resss 4908 | . . . . . . 7 inr | |
19 | rnss 4834 | . . . . . . 7 inr inr | |
20 | 18, 19 | ax-mp 5 | . . . . . 6 inr |
21 | ssun2 3286 | . . . . . 6 | |
22 | 20, 21 | sstri 3151 | . . . . 5 inr |
23 | xpss12 4711 | . . . . 5 inr ⊔ inr inr inr ⊔ | |
24 | 17, 22, 23 | mp2an 423 | . . . 4 inr inr ⊔ |
25 | 14, 24 | sstri 3151 | . . 3 inr ⊔ |
26 | 13, 25 | unssi 3297 | . 2 inl inr ⊔ |
27 | 1, 26 | eqsstri 3174 | 1 case ⊔ |
Colors of variables: wff set class |
Syntax hints: cun 3114 wss 3116 cxp 4602 ccnv 4603 cdm 4604 crn 4605 cres 4606 ccom 4608 wf1 5185 ⊔ cdju 7002 inlcinl 7010 inrcinr 7011 casecdjucase 7048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 df-case 7049 |
This theorem is referenced by: casef 7053 |
Copyright terms: Public domain | W3C validator |