ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caserel Unicode version

Theorem caserel 7146
Description: The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
caserel  |- case ( R ,  S )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )

Proof of Theorem caserel
StepHypRef Expression
1 df-case 7143 . 2  |- case ( R ,  S )  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr )
)
2 cocnvss 5191 . . . 4  |-  ( R  o.  `'inl )  C_  ( ran  (inl  |`  dom  R
)  X.  ran  ( R  |`  dom inl ) )
3 inlresf1 7120 . . . . . 6  |-  (inl  |`  dom  R
) : dom  R -1-1-> ( dom  R dom  S )
4 f1rn 5460 . . . . . 6  |-  ( (inl  |`  dom  R ) : dom  R -1-1-> ( dom 
R dom  S )  ->  ran  (inl  |`  dom  R ) 
C_  ( dom  R dom 
S ) )
53, 4ax-mp 5 . . . . 5  |-  ran  (inl  |` 
dom  R )  C_  ( dom  R dom  S )
6 resss 4966 . . . . . . 7  |-  ( R  |`  dom inl )  C_  R
7 rnss 4892 . . . . . . 7  |-  ( ( R  |`  dom inl )  C_  R  ->  ran  ( R  |` 
dom inl )  C_  ran  R
)
86, 7ax-mp 5 . . . . . 6  |-  ran  ( R  |`  dom inl )  C_  ran  R
9 ssun1 3322 . . . . . 6  |-  ran  R  C_  ( ran  R  u.  ran  S )
108, 9sstri 3188 . . . . 5  |-  ran  ( R  |`  dom inl )  C_  ( ran  R  u.  ran  S
)
11 xpss12 4766 . . . . 5  |-  ( ( ran  (inl  |`  dom  R
)  C_  ( dom  R dom  S )  /\  ran  ( R  |`  dom inl )  C_  ( ran  R  u.  ran  S ) )  -> 
( ran  (inl  |`  dom  R
)  X.  ran  ( R  |`  dom inl ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) ) )
125, 10, 11mp2an 426 . . . 4  |-  ( ran  (inl  |`  dom  R )  X.  ran  ( R  |`  dom inl ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
132, 12sstri 3188 . . 3  |-  ( R  o.  `'inl )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
14 cocnvss 5191 . . . 4  |-  ( S  o.  `'inr )  C_  ( ran  (inr  |`  dom  S
)  X.  ran  ( S  |`  dom inr ) )
15 inrresf1 7121 . . . . . 6  |-  (inr  |`  dom  S
) : dom  S -1-1-> ( dom  R dom  S )
16 f1rn 5460 . . . . . 6  |-  ( (inr  |`  dom  S ) : dom  S -1-1-> ( dom 
R dom  S )  ->  ran  (inr  |`  dom  S ) 
C_  ( dom  R dom 
S ) )
1715, 16ax-mp 5 . . . . 5  |-  ran  (inr  |` 
dom  S )  C_  ( dom  R dom  S )
18 resss 4966 . . . . . . 7  |-  ( S  |`  dom inr )  C_  S
19 rnss 4892 . . . . . . 7  |-  ( ( S  |`  dom inr )  C_  S  ->  ran  ( S  |` 
dom inr )  C_  ran  S
)
2018, 19ax-mp 5 . . . . . 6  |-  ran  ( S  |`  dom inr )  C_  ran  S
21 ssun2 3323 . . . . . 6  |-  ran  S  C_  ( ran  R  u.  ran  S )
2220, 21sstri 3188 . . . . 5  |-  ran  ( S  |`  dom inr )  C_  ( ran  R  u.  ran  S
)
23 xpss12 4766 . . . . 5  |-  ( ( ran  (inr  |`  dom  S
)  C_  ( dom  R dom  S )  /\  ran  ( S  |`  dom inr )  C_  ( ran  R  u.  ran  S ) )  -> 
( ran  (inr  |`  dom  S
)  X.  ran  ( S  |`  dom inr ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) ) )
2417, 22, 23mp2an 426 . . . 4  |-  ( ran  (inr  |`  dom  S )  X.  ran  ( S  |`  dom inr ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
2514, 24sstri 3188 . . 3  |-  ( S  o.  `'inr )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
2613, 25unssi 3334 . 2  |-  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )  C_  (
( dom  R dom  S
)  X.  ( ran 
R  u.  ran  S
) )
271, 26eqsstri 3211 1  |- case ( R ,  S )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
Colors of variables: wff set class
Syntax hints:    u. cun 3151    C_ wss 3153    X. cxp 4657   `'ccnv 4658   dom cdm 4659   ran crn 4660    |` cres 4661    o. ccom 4663   -1-1->wf1 5251   ⊔ cdju 7096  inlcinl 7104  inrcinr 7105  casecdjucase 7142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107  df-case 7143
This theorem is referenced by:  casef  7147
  Copyright terms: Public domain W3C validator