ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caserel Unicode version

Theorem caserel 7052
Description: The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
caserel  |- case ( R ,  S )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )

Proof of Theorem caserel
StepHypRef Expression
1 df-case 7049 . 2  |- case ( R ,  S )  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr )
)
2 cocnvss 5129 . . . 4  |-  ( R  o.  `'inl )  C_  ( ran  (inl  |`  dom  R
)  X.  ran  ( R  |`  dom inl ) )
3 inlresf1 7026 . . . . . 6  |-  (inl  |`  dom  R
) : dom  R -1-1-> ( dom  R dom  S )
4 f1rn 5394 . . . . . 6  |-  ( (inl  |`  dom  R ) : dom  R -1-1-> ( dom 
R dom  S )  ->  ran  (inl  |`  dom  R ) 
C_  ( dom  R dom 
S ) )
53, 4ax-mp 5 . . . . 5  |-  ran  (inl  |` 
dom  R )  C_  ( dom  R dom  S )
6 resss 4908 . . . . . . 7  |-  ( R  |`  dom inl )  C_  R
7 rnss 4834 . . . . . . 7  |-  ( ( R  |`  dom inl )  C_  R  ->  ran  ( R  |` 
dom inl )  C_  ran  R
)
86, 7ax-mp 5 . . . . . 6  |-  ran  ( R  |`  dom inl )  C_  ran  R
9 ssun1 3285 . . . . . 6  |-  ran  R  C_  ( ran  R  u.  ran  S )
108, 9sstri 3151 . . . . 5  |-  ran  ( R  |`  dom inl )  C_  ( ran  R  u.  ran  S
)
11 xpss12 4711 . . . . 5  |-  ( ( ran  (inl  |`  dom  R
)  C_  ( dom  R dom  S )  /\  ran  ( R  |`  dom inl )  C_  ( ran  R  u.  ran  S ) )  -> 
( ran  (inl  |`  dom  R
)  X.  ran  ( R  |`  dom inl ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) ) )
125, 10, 11mp2an 423 . . . 4  |-  ( ran  (inl  |`  dom  R )  X.  ran  ( R  |`  dom inl ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
132, 12sstri 3151 . . 3  |-  ( R  o.  `'inl )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
14 cocnvss 5129 . . . 4  |-  ( S  o.  `'inr )  C_  ( ran  (inr  |`  dom  S
)  X.  ran  ( S  |`  dom inr ) )
15 inrresf1 7027 . . . . . 6  |-  (inr  |`  dom  S
) : dom  S -1-1-> ( dom  R dom  S )
16 f1rn 5394 . . . . . 6  |-  ( (inr  |`  dom  S ) : dom  S -1-1-> ( dom 
R dom  S )  ->  ran  (inr  |`  dom  S ) 
C_  ( dom  R dom 
S ) )
1715, 16ax-mp 5 . . . . 5  |-  ran  (inr  |` 
dom  S )  C_  ( dom  R dom  S )
18 resss 4908 . . . . . . 7  |-  ( S  |`  dom inr )  C_  S
19 rnss 4834 . . . . . . 7  |-  ( ( S  |`  dom inr )  C_  S  ->  ran  ( S  |` 
dom inr )  C_  ran  S
)
2018, 19ax-mp 5 . . . . . 6  |-  ran  ( S  |`  dom inr )  C_  ran  S
21 ssun2 3286 . . . . . 6  |-  ran  S  C_  ( ran  R  u.  ran  S )
2220, 21sstri 3151 . . . . 5  |-  ran  ( S  |`  dom inr )  C_  ( ran  R  u.  ran  S
)
23 xpss12 4711 . . . . 5  |-  ( ( ran  (inr  |`  dom  S
)  C_  ( dom  R dom  S )  /\  ran  ( S  |`  dom inr )  C_  ( ran  R  u.  ran  S ) )  -> 
( ran  (inr  |`  dom  S
)  X.  ran  ( S  |`  dom inr ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) ) )
2417, 22, 23mp2an 423 . . . 4  |-  ( ran  (inr  |`  dom  S )  X.  ran  ( S  |`  dom inr ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
2514, 24sstri 3151 . . 3  |-  ( S  o.  `'inr )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
2613, 25unssi 3297 . 2  |-  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )  C_  (
( dom  R dom  S
)  X.  ( ran 
R  u.  ran  S
) )
271, 26eqsstri 3174 1  |- case ( R ,  S )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
Colors of variables: wff set class
Syntax hints:    u. cun 3114    C_ wss 3116    X. cxp 4602   `'ccnv 4603   dom cdm 4604   ran crn 4605    |` cres 4606    o. ccom 4608   -1-1->wf1 5185   ⊔ cdju 7002  inlcinl 7010  inrcinr 7011  casecdjucase 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013  df-case 7049
This theorem is referenced by:  casef  7053
  Copyright terms: Public domain W3C validator