ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caserel Unicode version

Theorem caserel 7088
Description: The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
caserel  |- case ( R ,  S )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )

Proof of Theorem caserel
StepHypRef Expression
1 df-case 7085 . 2  |- case ( R ,  S )  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr )
)
2 cocnvss 5156 . . . 4  |-  ( R  o.  `'inl )  C_  ( ran  (inl  |`  dom  R
)  X.  ran  ( R  |`  dom inl ) )
3 inlresf1 7062 . . . . . 6  |-  (inl  |`  dom  R
) : dom  R -1-1-> ( dom  R dom  S )
4 f1rn 5424 . . . . . 6  |-  ( (inl  |`  dom  R ) : dom  R -1-1-> ( dom 
R dom  S )  ->  ran  (inl  |`  dom  R ) 
C_  ( dom  R dom 
S ) )
53, 4ax-mp 5 . . . . 5  |-  ran  (inl  |` 
dom  R )  C_  ( dom  R dom  S )
6 resss 4933 . . . . . . 7  |-  ( R  |`  dom inl )  C_  R
7 rnss 4859 . . . . . . 7  |-  ( ( R  |`  dom inl )  C_  R  ->  ran  ( R  |` 
dom inl )  C_  ran  R
)
86, 7ax-mp 5 . . . . . 6  |-  ran  ( R  |`  dom inl )  C_  ran  R
9 ssun1 3300 . . . . . 6  |-  ran  R  C_  ( ran  R  u.  ran  S )
108, 9sstri 3166 . . . . 5  |-  ran  ( R  |`  dom inl )  C_  ( ran  R  u.  ran  S
)
11 xpss12 4735 . . . . 5  |-  ( ( ran  (inl  |`  dom  R
)  C_  ( dom  R dom  S )  /\  ran  ( R  |`  dom inl )  C_  ( ran  R  u.  ran  S ) )  -> 
( ran  (inl  |`  dom  R
)  X.  ran  ( R  |`  dom inl ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) ) )
125, 10, 11mp2an 426 . . . 4  |-  ( ran  (inl  |`  dom  R )  X.  ran  ( R  |`  dom inl ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
132, 12sstri 3166 . . 3  |-  ( R  o.  `'inl )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
14 cocnvss 5156 . . . 4  |-  ( S  o.  `'inr )  C_  ( ran  (inr  |`  dom  S
)  X.  ran  ( S  |`  dom inr ) )
15 inrresf1 7063 . . . . . 6  |-  (inr  |`  dom  S
) : dom  S -1-1-> ( dom  R dom  S )
16 f1rn 5424 . . . . . 6  |-  ( (inr  |`  dom  S ) : dom  S -1-1-> ( dom 
R dom  S )  ->  ran  (inr  |`  dom  S ) 
C_  ( dom  R dom 
S ) )
1715, 16ax-mp 5 . . . . 5  |-  ran  (inr  |` 
dom  S )  C_  ( dom  R dom  S )
18 resss 4933 . . . . . . 7  |-  ( S  |`  dom inr )  C_  S
19 rnss 4859 . . . . . . 7  |-  ( ( S  |`  dom inr )  C_  S  ->  ran  ( S  |` 
dom inr )  C_  ran  S
)
2018, 19ax-mp 5 . . . . . 6  |-  ran  ( S  |`  dom inr )  C_  ran  S
21 ssun2 3301 . . . . . 6  |-  ran  S  C_  ( ran  R  u.  ran  S )
2220, 21sstri 3166 . . . . 5  |-  ran  ( S  |`  dom inr )  C_  ( ran  R  u.  ran  S
)
23 xpss12 4735 . . . . 5  |-  ( ( ran  (inr  |`  dom  S
)  C_  ( dom  R dom  S )  /\  ran  ( S  |`  dom inr )  C_  ( ran  R  u.  ran  S ) )  -> 
( ran  (inr  |`  dom  S
)  X.  ran  ( S  |`  dom inr ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) ) )
2417, 22, 23mp2an 426 . . . 4  |-  ( ran  (inr  |`  dom  S )  X.  ran  ( S  |`  dom inr ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
2514, 24sstri 3166 . . 3  |-  ( S  o.  `'inr )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
2613, 25unssi 3312 . 2  |-  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )  C_  (
( dom  R dom  S
)  X.  ( ran 
R  u.  ran  S
) )
271, 26eqsstri 3189 1  |- case ( R ,  S )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
Colors of variables: wff set class
Syntax hints:    u. cun 3129    C_ wss 3131    X. cxp 4626   `'ccnv 4627   dom cdm 4628   ran crn 4629    |` cres 4630    o. ccom 4632   -1-1->wf1 5215   ⊔ cdju 7038  inlcinl 7046  inrcinr 7047  casecdjucase 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-dju 7039  df-inl 7048  df-inr 7049  df-case 7085
This theorem is referenced by:  casef  7089
  Copyright terms: Public domain W3C validator