ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caserel Unicode version

Theorem caserel 7076
Description: The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
caserel  |- case ( R ,  S )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )

Proof of Theorem caserel
StepHypRef Expression
1 df-case 7073 . 2  |- case ( R ,  S )  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr )
)
2 cocnvss 5146 . . . 4  |-  ( R  o.  `'inl )  C_  ( ran  (inl  |`  dom  R
)  X.  ran  ( R  |`  dom inl ) )
3 inlresf1 7050 . . . . . 6  |-  (inl  |`  dom  R
) : dom  R -1-1-> ( dom  R dom  S )
4 f1rn 5414 . . . . . 6  |-  ( (inl  |`  dom  R ) : dom  R -1-1-> ( dom 
R dom  S )  ->  ran  (inl  |`  dom  R ) 
C_  ( dom  R dom 
S ) )
53, 4ax-mp 5 . . . . 5  |-  ran  (inl  |` 
dom  R )  C_  ( dom  R dom  S )
6 resss 4924 . . . . . . 7  |-  ( R  |`  dom inl )  C_  R
7 rnss 4850 . . . . . . 7  |-  ( ( R  |`  dom inl )  C_  R  ->  ran  ( R  |` 
dom inl )  C_  ran  R
)
86, 7ax-mp 5 . . . . . 6  |-  ran  ( R  |`  dom inl )  C_  ran  R
9 ssun1 3296 . . . . . 6  |-  ran  R  C_  ( ran  R  u.  ran  S )
108, 9sstri 3162 . . . . 5  |-  ran  ( R  |`  dom inl )  C_  ( ran  R  u.  ran  S
)
11 xpss12 4727 . . . . 5  |-  ( ( ran  (inl  |`  dom  R
)  C_  ( dom  R dom  S )  /\  ran  ( R  |`  dom inl )  C_  ( ran  R  u.  ran  S ) )  -> 
( ran  (inl  |`  dom  R
)  X.  ran  ( R  |`  dom inl ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) ) )
125, 10, 11mp2an 426 . . . 4  |-  ( ran  (inl  |`  dom  R )  X.  ran  ( R  |`  dom inl ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
132, 12sstri 3162 . . 3  |-  ( R  o.  `'inl )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
14 cocnvss 5146 . . . 4  |-  ( S  o.  `'inr )  C_  ( ran  (inr  |`  dom  S
)  X.  ran  ( S  |`  dom inr ) )
15 inrresf1 7051 . . . . . 6  |-  (inr  |`  dom  S
) : dom  S -1-1-> ( dom  R dom  S )
16 f1rn 5414 . . . . . 6  |-  ( (inr  |`  dom  S ) : dom  S -1-1-> ( dom 
R dom  S )  ->  ran  (inr  |`  dom  S ) 
C_  ( dom  R dom 
S ) )
1715, 16ax-mp 5 . . . . 5  |-  ran  (inr  |` 
dom  S )  C_  ( dom  R dom  S )
18 resss 4924 . . . . . . 7  |-  ( S  |`  dom inr )  C_  S
19 rnss 4850 . . . . . . 7  |-  ( ( S  |`  dom inr )  C_  S  ->  ran  ( S  |` 
dom inr )  C_  ran  S
)
2018, 19ax-mp 5 . . . . . 6  |-  ran  ( S  |`  dom inr )  C_  ran  S
21 ssun2 3297 . . . . . 6  |-  ran  S  C_  ( ran  R  u.  ran  S )
2220, 21sstri 3162 . . . . 5  |-  ran  ( S  |`  dom inr )  C_  ( ran  R  u.  ran  S
)
23 xpss12 4727 . . . . 5  |-  ( ( ran  (inr  |`  dom  S
)  C_  ( dom  R dom  S )  /\  ran  ( S  |`  dom inr )  C_  ( ran  R  u.  ran  S ) )  -> 
( ran  (inr  |`  dom  S
)  X.  ran  ( S  |`  dom inr ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) ) )
2417, 22, 23mp2an 426 . . . 4  |-  ( ran  (inr  |`  dom  S )  X.  ran  ( S  |`  dom inr ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
2514, 24sstri 3162 . . 3  |-  ( S  o.  `'inr )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
2613, 25unssi 3308 . 2  |-  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )  C_  (
( dom  R dom  S
)  X.  ( ran 
R  u.  ran  S
) )
271, 26eqsstri 3185 1  |- case ( R ,  S )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
Colors of variables: wff set class
Syntax hints:    u. cun 3125    C_ wss 3127    X. cxp 4618   `'ccnv 4619   dom cdm 4620   ran crn 4621    |` cres 4622    o. ccom 4624   -1-1->wf1 5205   ⊔ cdju 7026  inlcinl 7034  inrcinr 7035  casecdjucase 7072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-1st 6131  df-2nd 6132  df-1o 6407  df-dju 7027  df-inl 7036  df-inr 7037  df-case 7073
This theorem is referenced by:  casef  7077
  Copyright terms: Public domain W3C validator