ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caserel Unicode version

Theorem caserel 7064
Description: The "case" construction of two relations is a relation, with bounds on its domain and codomain. Typically, the "case" construction is used when both relations have a common codomain. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
caserel  |- case ( R ,  S )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )

Proof of Theorem caserel
StepHypRef Expression
1 df-case 7061 . 2  |- case ( R ,  S )  =  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr )
)
2 cocnvss 5136 . . . 4  |-  ( R  o.  `'inl )  C_  ( ran  (inl  |`  dom  R
)  X.  ran  ( R  |`  dom inl ) )
3 inlresf1 7038 . . . . . 6  |-  (inl  |`  dom  R
) : dom  R -1-1-> ( dom  R dom  S )
4 f1rn 5404 . . . . . 6  |-  ( (inl  |`  dom  R ) : dom  R -1-1-> ( dom 
R dom  S )  ->  ran  (inl  |`  dom  R ) 
C_  ( dom  R dom 
S ) )
53, 4ax-mp 5 . . . . 5  |-  ran  (inl  |` 
dom  R )  C_  ( dom  R dom  S )
6 resss 4915 . . . . . . 7  |-  ( R  |`  dom inl )  C_  R
7 rnss 4841 . . . . . . 7  |-  ( ( R  |`  dom inl )  C_  R  ->  ran  ( R  |` 
dom inl )  C_  ran  R
)
86, 7ax-mp 5 . . . . . 6  |-  ran  ( R  |`  dom inl )  C_  ran  R
9 ssun1 3290 . . . . . 6  |-  ran  R  C_  ( ran  R  u.  ran  S )
108, 9sstri 3156 . . . . 5  |-  ran  ( R  |`  dom inl )  C_  ( ran  R  u.  ran  S
)
11 xpss12 4718 . . . . 5  |-  ( ( ran  (inl  |`  dom  R
)  C_  ( dom  R dom  S )  /\  ran  ( R  |`  dom inl )  C_  ( ran  R  u.  ran  S ) )  -> 
( ran  (inl  |`  dom  R
)  X.  ran  ( R  |`  dom inl ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) ) )
125, 10, 11mp2an 424 . . . 4  |-  ( ran  (inl  |`  dom  R )  X.  ran  ( R  |`  dom inl ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
132, 12sstri 3156 . . 3  |-  ( R  o.  `'inl )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
14 cocnvss 5136 . . . 4  |-  ( S  o.  `'inr )  C_  ( ran  (inr  |`  dom  S
)  X.  ran  ( S  |`  dom inr ) )
15 inrresf1 7039 . . . . . 6  |-  (inr  |`  dom  S
) : dom  S -1-1-> ( dom  R dom  S )
16 f1rn 5404 . . . . . 6  |-  ( (inr  |`  dom  S ) : dom  S -1-1-> ( dom 
R dom  S )  ->  ran  (inr  |`  dom  S ) 
C_  ( dom  R dom 
S ) )
1715, 16ax-mp 5 . . . . 5  |-  ran  (inr  |` 
dom  S )  C_  ( dom  R dom  S )
18 resss 4915 . . . . . . 7  |-  ( S  |`  dom inr )  C_  S
19 rnss 4841 . . . . . . 7  |-  ( ( S  |`  dom inr )  C_  S  ->  ran  ( S  |` 
dom inr )  C_  ran  S
)
2018, 19ax-mp 5 . . . . . 6  |-  ran  ( S  |`  dom inr )  C_  ran  S
21 ssun2 3291 . . . . . 6  |-  ran  S  C_  ( ran  R  u.  ran  S )
2220, 21sstri 3156 . . . . 5  |-  ran  ( S  |`  dom inr )  C_  ( ran  R  u.  ran  S
)
23 xpss12 4718 . . . . 5  |-  ( ( ran  (inr  |`  dom  S
)  C_  ( dom  R dom  S )  /\  ran  ( S  |`  dom inr )  C_  ( ran  R  u.  ran  S ) )  -> 
( ran  (inr  |`  dom  S
)  X.  ran  ( S  |`  dom inr ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) ) )
2417, 22, 23mp2an 424 . . . 4  |-  ( ran  (inr  |`  dom  S )  X.  ran  ( S  |`  dom inr ) )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
2514, 24sstri 3156 . . 3  |-  ( S  o.  `'inr )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
2613, 25unssi 3302 . 2  |-  ( ( R  o.  `'inl )  u.  ( S  o.  `'inr ) )  C_  (
( dom  R dom  S
)  X.  ( ran 
R  u.  ran  S
) )
271, 26eqsstri 3179 1  |- case ( R ,  S )  C_  ( ( dom  R dom 
S )  X.  ( ran  R  u.  ran  S
) )
Colors of variables: wff set class
Syntax hints:    u. cun 3119    C_ wss 3121    X. cxp 4609   `'ccnv 4610   dom cdm 4611   ran crn 4612    |` cres 4613    o. ccom 4615   -1-1->wf1 5195   ⊔ cdju 7014  inlcinl 7022  inrcinr 7023  casecdjucase 7060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061
This theorem is referenced by:  casef  7065
  Copyright terms: Public domain W3C validator