ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmrnssfld Unicode version

Theorem dmrnssfld 4908
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
Assertion
Ref Expression
dmrnssfld  |-  ( dom 
A  u.  ran  A
)  C_  U. U. A

Proof of Theorem dmrnssfld
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2755 . . . . 5  |-  x  e. 
_V
21eldm2 4843 . . . 4  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
31prid1 3713 . . . . . 6  |-  x  e. 
{ x ,  y }
4 vex 2755 . . . . . . . . . 10  |-  y  e. 
_V
51, 4uniop 4273 . . . . . . . . 9  |-  U. <. x ,  y >.  =  {
x ,  y }
61, 4uniopel 4274 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  A  ->  U. <. x ,  y >.  e.  U. A )
75, 6eqeltrrid 2277 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  A  ->  { x ,  y }  e.  U. A )
8 elssuni 3852 . . . . . . . 8  |-  ( { x ,  y }  e.  U. A  ->  { x ,  y }  C_  U. U. A
)
97, 8syl 14 . . . . . . 7  |-  ( <.
x ,  y >.  e.  A  ->  { x ,  y }  C_  U.
U. A )
109sseld 3169 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  ( x  e.  { x ,  y }  ->  x  e.  U. U. A ) )
113, 10mpi 15 . . . . 5  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
U. U. A )
1211exlimiv 1609 . . . 4  |-  ( E. y <. x ,  y
>.  e.  A  ->  x  e.  U. U. A )
132, 12sylbi 121 . . 3  |-  ( x  e.  dom  A  ->  x  e.  U. U. A
)
1413ssriv 3174 . 2  |-  dom  A  C_ 
U. U. A
154elrn2 4887 . . . 4  |-  ( y  e.  ran  A  <->  E. x <. x ,  y >.  e.  A )
164prid2 3714 . . . . . 6  |-  y  e. 
{ x ,  y }
179sseld 3169 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  ( y  e.  { x ,  y }  ->  y  e.  U. U. A ) )
1816, 17mpi 15 . . . . 5  |-  ( <.
x ,  y >.  e.  A  ->  y  e. 
U. U. A )
1918exlimiv 1609 . . . 4  |-  ( E. x <. x ,  y
>.  e.  A  ->  y  e.  U. U. A )
2015, 19sylbi 121 . . 3  |-  ( y  e.  ran  A  -> 
y  e.  U. U. A )
2120ssriv 3174 . 2  |-  ran  A  C_ 
U. U. A
2214, 21unssi 3325 1  |-  ( dom 
A  u.  ran  A
)  C_  U. U. A
Colors of variables: wff set class
Syntax hints:   E.wex 1503    e. wcel 2160    u. cun 3142    C_ wss 3144   {cpr 3608   <.cop 3610   U.cuni 3824   dom cdm 4644   ran crn 4645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-cnv 4652  df-dm 4654  df-rn 4655
This theorem is referenced by:  dmexg  4909  rnexg  4910  relfld  5175  relcoi2  5177
  Copyright terms: Public domain W3C validator