Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmrnssfld | Unicode version |
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
Ref | Expression |
---|---|
dmrnssfld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 | |
2 | 1 | eldm2 4802 | . . . 4 |
3 | 1 | prid1 3682 | . . . . . 6 |
4 | vex 2729 | . . . . . . . . . 10 | |
5 | 1, 4 | uniop 4233 | . . . . . . . . 9 |
6 | 1, 4 | uniopel 4234 | . . . . . . . . 9 |
7 | 5, 6 | eqeltrrid 2254 | . . . . . . . 8 |
8 | elssuni 3817 | . . . . . . . 8 | |
9 | 7, 8 | syl 14 | . . . . . . 7 |
10 | 9 | sseld 3141 | . . . . . 6 |
11 | 3, 10 | mpi 15 | . . . . 5 |
12 | 11 | exlimiv 1586 | . . . 4 |
13 | 2, 12 | sylbi 120 | . . 3 |
14 | 13 | ssriv 3146 | . 2 |
15 | 4 | elrn2 4846 | . . . 4 |
16 | 4 | prid2 3683 | . . . . . 6 |
17 | 9 | sseld 3141 | . . . . . 6 |
18 | 16, 17 | mpi 15 | . . . . 5 |
19 | 18 | exlimiv 1586 | . . . 4 |
20 | 15, 19 | sylbi 120 | . . 3 |
21 | 20 | ssriv 3146 | . 2 |
22 | 14, 21 | unssi 3297 | 1 |
Colors of variables: wff set class |
Syntax hints: wex 1480 wcel 2136 cun 3114 wss 3116 cpr 3577 cop 3579 cuni 3789 cdm 4604 crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: dmexg 4868 rnexg 4869 relfld 5132 relcoi2 5134 |
Copyright terms: Public domain | W3C validator |