| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmrnssfld | Unicode version | ||
| Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
| Ref | Expression |
|---|---|
| dmrnssfld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. . . . 5
| |
| 2 | 1 | eldm2 4920 |
. . . 4
|
| 3 | 1 | prid1 3772 |
. . . . . 6
|
| 4 | vex 2802 |
. . . . . . . . . 10
| |
| 5 | 1, 4 | uniop 4341 |
. . . . . . . . 9
|
| 6 | 1, 4 | uniopel 4342 |
. . . . . . . . 9
|
| 7 | 5, 6 | eqeltrrid 2317 |
. . . . . . . 8
|
| 8 | elssuni 3915 |
. . . . . . . 8
| |
| 9 | 7, 8 | syl 14 |
. . . . . . 7
|
| 10 | 9 | sseld 3223 |
. . . . . 6
|
| 11 | 3, 10 | mpi 15 |
. . . . 5
|
| 12 | 11 | exlimiv 1644 |
. . . 4
|
| 13 | 2, 12 | sylbi 121 |
. . 3
|
| 14 | 13 | ssriv 3228 |
. 2
|
| 15 | 4 | elrn2 4965 |
. . . 4
|
| 16 | 4 | prid2 3773 |
. . . . . 6
|
| 17 | 9 | sseld 3223 |
. . . . . 6
|
| 18 | 16, 17 | mpi 15 |
. . . . 5
|
| 19 | 18 | exlimiv 1644 |
. . . 4
|
| 20 | 15, 19 | sylbi 121 |
. . 3
|
| 21 | 20 | ssriv 3228 |
. 2
|
| 22 | 14, 21 | unssi 3379 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: dmexg 4987 rnexg 4988 relfld 5256 relcoi2 5258 |
| Copyright terms: Public domain | W3C validator |