| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmrnssfld | Unicode version | ||
| Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
| Ref | Expression |
|---|---|
| dmrnssfld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. . . . 5
| |
| 2 | 1 | eldm2 4895 |
. . . 4
|
| 3 | 1 | prid1 3749 |
. . . . . 6
|
| 4 | vex 2779 |
. . . . . . . . . 10
| |
| 5 | 1, 4 | uniop 4318 |
. . . . . . . . 9
|
| 6 | 1, 4 | uniopel 4319 |
. . . . . . . . 9
|
| 7 | 5, 6 | eqeltrrid 2295 |
. . . . . . . 8
|
| 8 | elssuni 3892 |
. . . . . . . 8
| |
| 9 | 7, 8 | syl 14 |
. . . . . . 7
|
| 10 | 9 | sseld 3200 |
. . . . . 6
|
| 11 | 3, 10 | mpi 15 |
. . . . 5
|
| 12 | 11 | exlimiv 1622 |
. . . 4
|
| 13 | 2, 12 | sylbi 121 |
. . 3
|
| 14 | 13 | ssriv 3205 |
. 2
|
| 15 | 4 | elrn2 4939 |
. . . 4
|
| 16 | 4 | prid2 3750 |
. . . . . 6
|
| 17 | 9 | sseld 3200 |
. . . . . 6
|
| 18 | 16, 17 | mpi 15 |
. . . . 5
|
| 19 | 18 | exlimiv 1622 |
. . . 4
|
| 20 | 15, 19 | sylbi 121 |
. . 3
|
| 21 | 20 | ssriv 3205 |
. 2
|
| 22 | 14, 21 | unssi 3356 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-cnv 4701 df-dm 4703 df-rn 4704 |
| This theorem is referenced by: dmexg 4961 rnexg 4962 relfld 5230 relcoi2 5232 |
| Copyright terms: Public domain | W3C validator |