Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-prexg Unicode version

Theorem bj-prexg 13946
Description: Proof of prexg 4196 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-prexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { A ,  B }  e.  _V )

Proof of Theorem bj-prexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 3661 . . . . . 6  |-  ( y  =  B  ->  { x ,  y }  =  { x ,  B } )
21eleq1d 2239 . . . . 5  |-  ( y  =  B  ->  ( { x ,  y }  e.  _V  <->  { x ,  B }  e.  _V ) )
3 bj-zfpair2 13945 . . . . 5  |-  { x ,  y }  e.  _V
42, 3vtoclg 2790 . . . 4  |-  ( B  e.  W  ->  { x ,  B }  e.  _V )
5 preq1 3660 . . . . 5  |-  ( x  =  A  ->  { x ,  B }  =  { A ,  B }
)
65eleq1d 2239 . . . 4  |-  ( x  =  A  ->  ( { x ,  B }  e.  _V  <->  { A ,  B }  e.  _V ) )
74, 6syl5ib 153 . . 3  |-  ( x  =  A  ->  ( B  e.  W  ->  { A ,  B }  e.  _V ) )
87vtocleg 2801 . 2  |-  ( A  e.  V  ->  ( B  e.  W  ->  { A ,  B }  e.  _V ) )
98imp 123 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { A ,  B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-pr 4194  ax-bdor 13851  ax-bdeq 13855  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590
This theorem is referenced by:  bj-snexg  13947  bj-unex  13954
  Copyright terms: Public domain W3C validator