Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-prexg Unicode version

Theorem bj-prexg 15567
Description: Proof of prexg 4245 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-prexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { A ,  B }  e.  _V )

Proof of Theorem bj-prexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 3701 . . . . . 6  |-  ( y  =  B  ->  { x ,  y }  =  { x ,  B } )
21eleq1d 2265 . . . . 5  |-  ( y  =  B  ->  ( { x ,  y }  e.  _V  <->  { x ,  B }  e.  _V ) )
3 bj-zfpair2 15566 . . . . 5  |-  { x ,  y }  e.  _V
42, 3vtoclg 2824 . . . 4  |-  ( B  e.  W  ->  { x ,  B }  e.  _V )
5 preq1 3700 . . . . 5  |-  ( x  =  A  ->  { x ,  B }  =  { A ,  B }
)
65eleq1d 2265 . . . 4  |-  ( x  =  A  ->  ( { x ,  B }  e.  _V  <->  { A ,  B }  e.  _V ) )
74, 6imbitrid 154 . . 3  |-  ( x  =  A  ->  ( B  e.  W  ->  { A ,  B }  e.  _V ) )
87vtocleg 2835 . 2  |-  ( A  e.  V  ->  ( B  e.  W  ->  { A ,  B }  e.  _V ) )
98imp 124 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { A ,  B }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   {cpr 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-pr 4243  ax-bdor 15472  ax-bdeq 15476  ax-bdsep 15540
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630
This theorem is referenced by:  bj-snexg  15568  bj-unex  15575
  Copyright terms: Public domain W3C validator