Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclg1f Unicode version

Theorem vtoclg1f 2749
 Description: Version of vtoclgf 2748 with one non-freeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-11 1485 and ax-13 1492. (Contributed by BJ, 1-May-2019.)
Hypotheses
Ref Expression
vtoclg1f.nf
vtoclg1f.maj
vtoclg1f.min
Assertion
Ref Expression
vtoclg1f
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem vtoclg1f
StepHypRef Expression
1 elex 2701 . 2
2 isset 2696 . . 3
3 vtoclg1f.nf . . . 4
4 vtoclg1f.min . . . . 5
5 vtoclg1f.maj . . . . 5
64, 5mpbii 147 . . . 4
73, 6exlimi 1574 . . 3
82, 7sylbi 120 . 2
91, 8syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wceq 1332  wnf 1437  wex 1469   wcel 1481  cvv 2690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-v 2692 This theorem is referenced by:  opeliunxp2f  6144  summodclem2a  11202
 Copyright terms: Public domain W3C validator