ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclg1f Unicode version

Theorem vtoclg1f 2785
Description: Version of vtoclgf 2784 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-11 1494 and ax-13 2138. (Contributed by BJ, 1-May-2019.)
Hypotheses
Ref Expression
vtoclg1f.nf  |-  F/ x ps
vtoclg1f.maj  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclg1f.min  |-  ph
Assertion
Ref Expression
vtoclg1f  |-  ( A  e.  V  ->  ps )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    V( x)

Proof of Theorem vtoclg1f
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 isset 2732 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
3 vtoclg1f.nf . . . 4  |-  F/ x ps
4 vtoclg1f.min . . . . 5  |-  ph
5 vtoclg1f.maj . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
64, 5mpbii 147 . . . 4  |-  ( x  =  A  ->  ps )
73, 6exlimi 1582 . . 3  |-  ( E. x  x  =  A  ->  ps )
82, 7sylbi 120 . 2  |-  ( A  e.  _V  ->  ps )
91, 8syl 14 1  |-  ( A  e.  V  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   F/wnf 1448   E.wex 1480    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  opeliunxp2f  6206  summodclem2a  11322  fprodsplit1f  11575
  Copyright terms: Public domain W3C validator