Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclg1f | GIF version |
Description: Version of vtoclgf 2784 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-11 1494 and ax-13 2138. (Contributed by BJ, 1-May-2019.) |
Ref | Expression |
---|---|
vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg1f.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | isset 2732 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | vtoclg1f.nf | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | vtoclg1f.min | . . . . 5 ⊢ 𝜑 | |
5 | vtoclg1f.maj | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | mpbii 147 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜓) |
7 | 3, 6 | exlimi 1582 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
8 | 2, 7 | sylbi 120 | . 2 ⊢ (𝐴 ∈ V → 𝜓) |
9 | 1, 8 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 Ⅎwnf 1448 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: opeliunxp2f 6206 summodclem2a 11322 fprodsplit1f 11575 |
Copyright terms: Public domain | W3C validator |