| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclg1f | GIF version | ||
| Description: Version of vtoclgf 2836 with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-11 1530 and ax-13 2180. (Contributed by BJ, 1-May-2019.) |
| Ref | Expression |
|---|---|
| vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
| vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg1f.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | isset 2783 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 3 | vtoclg1f.nf | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | vtoclg1f.min | . . . . 5 ⊢ 𝜑 | |
| 5 | vtoclg1f.maj | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 4, 5 | mpbii 148 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜓) |
| 7 | 3, 6 | exlimi 1618 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
| 8 | 2, 7 | sylbi 121 | . 2 ⊢ (𝐴 ∈ V → 𝜓) |
| 9 | 1, 8 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: opeliunxp2f 6347 summodclem2a 11807 fprodsplit1f 12060 |
| Copyright terms: Public domain | W3C validator |