| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeliunxp2f | Unicode version | ||
| Description: Membership in a union of
Cartesian products, using bound-variable
hypothesis for |
| Ref | Expression |
|---|---|
| opeliunxp2f.f |
|
| opeliunxp2f.e |
|
| Ref | Expression |
|---|---|
| opeliunxp2f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4083 |
. . 3
| |
| 2 | relxp 4827 |
. . . . . 6
| |
| 3 | 2 | rgenw 2585 |
. . . . 5
|
| 4 | reliun 4839 |
. . . . 5
| |
| 5 | 3, 4 | mpbir 146 |
. . . 4
|
| 6 | 5 | brrelex1i 4761 |
. . 3
|
| 7 | 1, 6 | sylbir 135 |
. 2
|
| 8 | elex 2811 |
. . 3
| |
| 9 | 8 | adantr 276 |
. 2
|
| 10 | nfiu1 3994 |
. . . . 5
| |
| 11 | 10 | nfel2 2385 |
. . . 4
|
| 12 | nfv 1574 |
. . . . 5
| |
| 13 | opeliunxp2f.f |
. . . . . 6
| |
| 14 | 13 | nfel2 2385 |
. . . . 5
|
| 15 | 12, 14 | nfan 1611 |
. . . 4
|
| 16 | 11, 15 | nfbi 1635 |
. . 3
|
| 17 | opeq1 3856 |
. . . . 5
| |
| 18 | 17 | eleq1d 2298 |
. . . 4
|
| 19 | eleq1 2292 |
. . . . 5
| |
| 20 | opeliunxp2f.e |
. . . . . 6
| |
| 21 | 20 | eleq2d 2299 |
. . . . 5
|
| 22 | 19, 21 | anbi12d 473 |
. . . 4
|
| 23 | 18, 22 | bibi12d 235 |
. . 3
|
| 24 | opeliunxp 4773 |
. . 3
| |
| 25 | 16, 23, 24 | vtoclg1f 2860 |
. 2
|
| 26 | 7, 9, 25 | pm5.21nii 709 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-iun 3966 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 |
| This theorem is referenced by: fisumcom2 11944 fprodcom2fi 12132 |
| Copyright terms: Public domain | W3C validator |