| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeliunxp2f | Unicode version | ||
| Description: Membership in a union of
Cartesian products, using bound-variable
hypothesis for |
| Ref | Expression |
|---|---|
| opeliunxp2f.f |
|
| opeliunxp2f.e |
|
| Ref | Expression |
|---|---|
| opeliunxp2f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4060 |
. . 3
| |
| 2 | relxp 4802 |
. . . . . 6
| |
| 3 | 2 | rgenw 2563 |
. . . . 5
|
| 4 | reliun 4814 |
. . . . 5
| |
| 5 | 3, 4 | mpbir 146 |
. . . 4
|
| 6 | 5 | brrelex1i 4736 |
. . 3
|
| 7 | 1, 6 | sylbir 135 |
. 2
|
| 8 | elex 2788 |
. . 3
| |
| 9 | 8 | adantr 276 |
. 2
|
| 10 | nfiu1 3971 |
. . . . 5
| |
| 11 | 10 | nfel2 2363 |
. . . 4
|
| 12 | nfv 1552 |
. . . . 5
| |
| 13 | opeliunxp2f.f |
. . . . . 6
| |
| 14 | 13 | nfel2 2363 |
. . . . 5
|
| 15 | 12, 14 | nfan 1589 |
. . . 4
|
| 16 | 11, 15 | nfbi 1613 |
. . 3
|
| 17 | opeq1 3833 |
. . . . 5
| |
| 18 | 17 | eleq1d 2276 |
. . . 4
|
| 19 | eleq1 2270 |
. . . . 5
| |
| 20 | opeliunxp2f.e |
. . . . . 6
| |
| 21 | 20 | eleq2d 2277 |
. . . . 5
|
| 22 | 19, 21 | anbi12d 473 |
. . . 4
|
| 23 | 18, 22 | bibi12d 235 |
. . 3
|
| 24 | opeliunxp 4748 |
. . 3
| |
| 25 | 16, 23, 24 | vtoclg1f 2837 |
. 2
|
| 26 | 7, 9, 25 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-iun 3943 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 |
| This theorem is referenced by: fisumcom2 11864 fprodcom2fi 12052 |
| Copyright terms: Public domain | W3C validator |