ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeliunxp2f Unicode version

Theorem opeliunxp2f 6291
Description: Membership in a union of Cartesian products, using bound-variable hypothesis for  E instead of distinct variable conditions as in opeliunxp2 4802. (Contributed by AV, 25-Oct-2020.)
Hypotheses
Ref Expression
opeliunxp2f.f  |-  F/_ x E
opeliunxp2f.e  |-  ( x  =  C  ->  B  =  E )
Assertion
Ref Expression
opeliunxp2f  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    E( x)

Proof of Theorem opeliunxp2f
StepHypRef Expression
1 df-br 4030 . . 3  |-  ( C
U_ x  e.  A  ( { x }  X.  B ) D  <->  <. C ,  D >.  e.  U_ x  e.  A  ( {
x }  X.  B
) )
2 relxp 4768 . . . . . 6  |-  Rel  ( { x }  X.  B )
32rgenw 2549 . . . . 5  |-  A. x  e.  A  Rel  ( { x }  X.  B
)
4 reliun 4780 . . . . 5  |-  ( Rel  U_ x  e.  A  ( { x }  X.  B )  <->  A. x  e.  A  Rel  ( { x }  X.  B
) )
53, 4mpbir 146 . . . 4  |-  Rel  U_ x  e.  A  ( {
x }  X.  B
)
65brrelex1i 4702 . . 3  |-  ( C
U_ x  e.  A  ( { x }  X.  B ) D  ->  C  e.  _V )
71, 6sylbir 135 . 2  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  ->  C  e.  _V )
8 elex 2771 . . 3  |-  ( C  e.  A  ->  C  e.  _V )
98adantr 276 . 2  |-  ( ( C  e.  A  /\  D  e.  E )  ->  C  e.  _V )
10 nfiu1 3942 . . . . 5  |-  F/_ x U_ x  e.  A  ( { x }  X.  B )
1110nfel2 2349 . . . 4  |-  F/ x <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )
12 nfv 1539 . . . . 5  |-  F/ x  C  e.  A
13 opeliunxp2f.f . . . . . 6  |-  F/_ x E
1413nfel2 2349 . . . . 5  |-  F/ x  D  e.  E
1512, 14nfan 1576 . . . 4  |-  F/ x
( C  e.  A  /\  D  e.  E
)
1611, 15nfbi 1600 . . 3  |-  F/ x
( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
17 opeq1 3804 . . . . 5  |-  ( x  =  C  ->  <. x ,  D >.  =  <. C ,  D >. )
1817eleq1d 2262 . . . 4  |-  ( x  =  C  ->  ( <. x ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  <. C ,  D >.  e.  U_ x  e.  A  ( {
x }  X.  B
) ) )
19 eleq1 2256 . . . . 5  |-  ( x  =  C  ->  (
x  e.  A  <->  C  e.  A ) )
20 opeliunxp2f.e . . . . . 6  |-  ( x  =  C  ->  B  =  E )
2120eleq2d 2263 . . . . 5  |-  ( x  =  C  ->  ( D  e.  B  <->  D  e.  E ) )
2219, 21anbi12d 473 . . . 4  |-  ( x  =  C  ->  (
( x  e.  A  /\  D  e.  B
)  <->  ( C  e.  A  /\  D  e.  E ) ) )
2318, 22bibi12d 235 . . 3  |-  ( x  =  C  ->  (
( <. x ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  D  e.  B ) )  <->  ( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) ) ) )
24 opeliunxp 4714 . . 3  |-  ( <.
x ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  D  e.  B ) )
2516, 23, 24vtoclg1f 2819 . 2  |-  ( C  e.  _V  ->  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) ) )
267, 9, 25pm5.21nii 705 1  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   F/_wnfc 2323   A.wral 2472   _Vcvv 2760   {csn 3618   <.cop 3621   U_ciun 3912   class class class wbr 4029    X. cxp 4657   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-iun 3914  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666
This theorem is referenced by:  fisumcom2  11581  fprodcom2fi  11769
  Copyright terms: Public domain W3C validator