| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeliunxp2f | Unicode version | ||
| Description: Membership in a union of
Cartesian products, using bound-variable
hypothesis for |
| Ref | Expression |
|---|---|
| opeliunxp2f.f |
|
| opeliunxp2f.e |
|
| Ref | Expression |
|---|---|
| opeliunxp2f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4035 |
. . 3
| |
| 2 | relxp 4773 |
. . . . . 6
| |
| 3 | 2 | rgenw 2552 |
. . . . 5
|
| 4 | reliun 4785 |
. . . . 5
| |
| 5 | 3, 4 | mpbir 146 |
. . . 4
|
| 6 | 5 | brrelex1i 4707 |
. . 3
|
| 7 | 1, 6 | sylbir 135 |
. 2
|
| 8 | elex 2774 |
. . 3
| |
| 9 | 8 | adantr 276 |
. 2
|
| 10 | nfiu1 3947 |
. . . . 5
| |
| 11 | 10 | nfel2 2352 |
. . . 4
|
| 12 | nfv 1542 |
. . . . 5
| |
| 13 | opeliunxp2f.f |
. . . . . 6
| |
| 14 | 13 | nfel2 2352 |
. . . . 5
|
| 15 | 12, 14 | nfan 1579 |
. . . 4
|
| 16 | 11, 15 | nfbi 1603 |
. . 3
|
| 17 | opeq1 3809 |
. . . . 5
| |
| 18 | 17 | eleq1d 2265 |
. . . 4
|
| 19 | eleq1 2259 |
. . . . 5
| |
| 20 | opeliunxp2f.e |
. . . . . 6
| |
| 21 | 20 | eleq2d 2266 |
. . . . 5
|
| 22 | 19, 21 | anbi12d 473 |
. . . 4
|
| 23 | 18, 22 | bibi12d 235 |
. . 3
|
| 24 | opeliunxp 4719 |
. . 3
| |
| 25 | 16, 23, 24 | vtoclg1f 2823 |
. 2
|
| 26 | 7, 9, 25 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-iun 3919 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 |
| This theorem is referenced by: fisumcom2 11620 fprodcom2fi 11808 |
| Copyright terms: Public domain | W3C validator |