Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeliunxp2f | Unicode version |
Description: Membership in a union of Cartesian products, using bound-variable hypothesis for instead of distinct variable conditions as in opeliunxp2 4744. (Contributed by AV, 25-Oct-2020.) |
Ref | Expression |
---|---|
opeliunxp2f.f | |
opeliunxp2f.e |
Ref | Expression |
---|---|
opeliunxp2f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3983 | . . 3 | |
2 | relxp 4713 | . . . . . 6 | |
3 | 2 | rgenw 2521 | . . . . 5 |
4 | reliun 4725 | . . . . 5 | |
5 | 3, 4 | mpbir 145 | . . . 4 |
6 | 5 | brrelex1i 4647 | . . 3 |
7 | 1, 6 | sylbir 134 | . 2 |
8 | elex 2737 | . . 3 | |
9 | 8 | adantr 274 | . 2 |
10 | nfiu1 3896 | . . . . 5 | |
11 | 10 | nfel2 2321 | . . . 4 |
12 | nfv 1516 | . . . . 5 | |
13 | opeliunxp2f.f | . . . . . 6 | |
14 | 13 | nfel2 2321 | . . . . 5 |
15 | 12, 14 | nfan 1553 | . . . 4 |
16 | 11, 15 | nfbi 1577 | . . 3 |
17 | opeq1 3758 | . . . . 5 | |
18 | 17 | eleq1d 2235 | . . . 4 |
19 | eleq1 2229 | . . . . 5 | |
20 | opeliunxp2f.e | . . . . . 6 | |
21 | 20 | eleq2d 2236 | . . . . 5 |
22 | 19, 21 | anbi12d 465 | . . . 4 |
23 | 18, 22 | bibi12d 234 | . . 3 |
24 | opeliunxp 4659 | . . 3 | |
25 | 16, 23, 24 | vtoclg1f 2785 | . 2 |
26 | 7, 9, 25 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wnfc 2295 wral 2444 cvv 2726 csn 3576 cop 3579 ciun 3866 class class class wbr 3982 cxp 4602 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iun 3868 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 |
This theorem is referenced by: fisumcom2 11379 fprodcom2fi 11567 |
Copyright terms: Public domain | W3C validator |