ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeliunxp2f Unicode version

Theorem opeliunxp2f 6206
Description: Membership in a union of Cartesian products, using bound-variable hypothesis for  E instead of distinct variable conditions as in opeliunxp2 4744. (Contributed by AV, 25-Oct-2020.)
Hypotheses
Ref Expression
opeliunxp2f.f  |-  F/_ x E
opeliunxp2f.e  |-  ( x  =  C  ->  B  =  E )
Assertion
Ref Expression
opeliunxp2f  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    E( x)

Proof of Theorem opeliunxp2f
StepHypRef Expression
1 df-br 3983 . . 3  |-  ( C
U_ x  e.  A  ( { x }  X.  B ) D  <->  <. C ,  D >.  e.  U_ x  e.  A  ( {
x }  X.  B
) )
2 relxp 4713 . . . . . 6  |-  Rel  ( { x }  X.  B )
32rgenw 2521 . . . . 5  |-  A. x  e.  A  Rel  ( { x }  X.  B
)
4 reliun 4725 . . . . 5  |-  ( Rel  U_ x  e.  A  ( { x }  X.  B )  <->  A. x  e.  A  Rel  ( { x }  X.  B
) )
53, 4mpbir 145 . . . 4  |-  Rel  U_ x  e.  A  ( {
x }  X.  B
)
65brrelex1i 4647 . . 3  |-  ( C
U_ x  e.  A  ( { x }  X.  B ) D  ->  C  e.  _V )
71, 6sylbir 134 . 2  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  ->  C  e.  _V )
8 elex 2737 . . 3  |-  ( C  e.  A  ->  C  e.  _V )
98adantr 274 . 2  |-  ( ( C  e.  A  /\  D  e.  E )  ->  C  e.  _V )
10 nfiu1 3896 . . . . 5  |-  F/_ x U_ x  e.  A  ( { x }  X.  B )
1110nfel2 2321 . . . 4  |-  F/ x <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )
12 nfv 1516 . . . . 5  |-  F/ x  C  e.  A
13 opeliunxp2f.f . . . . . 6  |-  F/_ x E
1413nfel2 2321 . . . . 5  |-  F/ x  D  e.  E
1512, 14nfan 1553 . . . 4  |-  F/ x
( C  e.  A  /\  D  e.  E
)
1611, 15nfbi 1577 . . 3  |-  F/ x
( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
17 opeq1 3758 . . . . 5  |-  ( x  =  C  ->  <. x ,  D >.  =  <. C ,  D >. )
1817eleq1d 2235 . . . 4  |-  ( x  =  C  ->  ( <. x ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  <. C ,  D >.  e.  U_ x  e.  A  ( {
x }  X.  B
) ) )
19 eleq1 2229 . . . . 5  |-  ( x  =  C  ->  (
x  e.  A  <->  C  e.  A ) )
20 opeliunxp2f.e . . . . . 6  |-  ( x  =  C  ->  B  =  E )
2120eleq2d 2236 . . . . 5  |-  ( x  =  C  ->  ( D  e.  B  <->  D  e.  E ) )
2219, 21anbi12d 465 . . . 4  |-  ( x  =  C  ->  (
( x  e.  A  /\  D  e.  B
)  <->  ( C  e.  A  /\  D  e.  E ) ) )
2318, 22bibi12d 234 . . 3  |-  ( x  =  C  ->  (
( <. x ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  D  e.  B ) )  <->  ( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) ) ) )
24 opeliunxp 4659 . . 3  |-  ( <.
x ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  D  e.  B ) )
2516, 23, 24vtoclg1f 2785 . 2  |-  ( C  e.  _V  ->  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) ) )
267, 9, 25pm5.21nii 694 1  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   F/_wnfc 2295   A.wral 2444   _Vcvv 2726   {csn 3576   <.cop 3579   U_ciun 3866   class class class wbr 3982    X. cxp 4602   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-iun 3868  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611
This theorem is referenced by:  fisumcom2  11379  fprodcom2fi  11567
  Copyright terms: Public domain W3C validator