| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeliunxp2f | Unicode version | ||
| Description: Membership in a union of
Cartesian products, using bound-variable
hypothesis for |
| Ref | Expression |
|---|---|
| opeliunxp2f.f |
|
| opeliunxp2f.e |
|
| Ref | Expression |
|---|---|
| opeliunxp2f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4044 |
. . 3
| |
| 2 | relxp 4783 |
. . . . . 6
| |
| 3 | 2 | rgenw 2560 |
. . . . 5
|
| 4 | reliun 4795 |
. . . . 5
| |
| 5 | 3, 4 | mpbir 146 |
. . . 4
|
| 6 | 5 | brrelex1i 4717 |
. . 3
|
| 7 | 1, 6 | sylbir 135 |
. 2
|
| 8 | elex 2782 |
. . 3
| |
| 9 | 8 | adantr 276 |
. 2
|
| 10 | nfiu1 3956 |
. . . . 5
| |
| 11 | 10 | nfel2 2360 |
. . . 4
|
| 12 | nfv 1550 |
. . . . 5
| |
| 13 | opeliunxp2f.f |
. . . . . 6
| |
| 14 | 13 | nfel2 2360 |
. . . . 5
|
| 15 | 12, 14 | nfan 1587 |
. . . 4
|
| 16 | 11, 15 | nfbi 1611 |
. . 3
|
| 17 | opeq1 3818 |
. . . . 5
| |
| 18 | 17 | eleq1d 2273 |
. . . 4
|
| 19 | eleq1 2267 |
. . . . 5
| |
| 20 | opeliunxp2f.e |
. . . . . 6
| |
| 21 | 20 | eleq2d 2274 |
. . . . 5
|
| 22 | 19, 21 | anbi12d 473 |
. . . 4
|
| 23 | 18, 22 | bibi12d 235 |
. . 3
|
| 24 | opeliunxp 4729 |
. . 3
| |
| 25 | 16, 23, 24 | vtoclg1f 2831 |
. 2
|
| 26 | 7, 9, 25 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-iun 3928 df-br 4044 df-opab 4105 df-xp 4680 df-rel 4681 |
| This theorem is referenced by: fisumcom2 11720 fprodcom2fi 11908 |
| Copyright terms: Public domain | W3C validator |