ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss2 Unicode version

Theorem xpss2 4771
Description: Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.)
Assertion
Ref Expression
xpss2  |-  ( A 
C_  B  ->  ( C  X.  A )  C_  ( C  X.  B
) )

Proof of Theorem xpss2
StepHypRef Expression
1 ssid 3200 . 2  |-  C  C_  C
2 xpss12 4767 . 2  |-  ( ( C  C_  C  /\  A  C_  B )  -> 
( C  X.  A
)  C_  ( C  X.  B ) )
31, 2mpan 424 1  |-  ( A 
C_  B  ->  ( C  X.  A )  C_  ( C  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3154    X. cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3160  df-ss 3167  df-opab 4092  df-xp 4666
This theorem is referenced by:  ssxp2  5104  xpdom3m  6890  axresscn  7922  tx2cn  14449  dvfvalap  14860
  Copyright terms: Public domain W3C validator