ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpss2 Unicode version

Theorem xpss2 4722
Description: Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.)
Assertion
Ref Expression
xpss2  |-  ( A 
C_  B  ->  ( C  X.  A )  C_  ( C  X.  B
) )

Proof of Theorem xpss2
StepHypRef Expression
1 ssid 3167 . 2  |-  C  C_  C
2 xpss12 4718 . 2  |-  ( ( C  C_  C  /\  A  C_  B )  -> 
( C  X.  A
)  C_  ( C  X.  B ) )
31, 2mpan 422 1  |-  ( A 
C_  B  ->  ( C  X.  A )  C_  ( C  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3121    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-in 3127  df-ss 3134  df-opab 4051  df-xp 4617
This theorem is referenced by:  ssxp2  5048  xpdom3m  6812  axresscn  7822  tx2cn  13064  dvfvalap  13444
  Copyright terms: Public domain W3C validator